Maximum likelihood (ML) phylogenies of 109 tymoviruses, including three obtained directly from metagenomes, were calculated from all three open reading frames separately, but the concatenated sequences of their replicase and coat protein genes gave the most representative trees. ML phylogenies were also calculated from all recorded tymomvirus coat protein genes, and from datasets of the turnip yellow mosaic virus cluster, and separately of tomato yellow blotch, Andean potato latent and Andean potato mild mosaic viruses. These phylogenies showed that the basal divergence of tymoviruses occurred in a population infecting Eurasian brassicas (rosids), and more recently, one of the basal lineages diversified and adapted to infect some solanaceous (asterid) plants and crops of Central and South America.
View Article and Find Full Text PDFBreeders have made important efforts to develop genotypes able to resist virus attacks in sweetpotato, a major crop providing food security and poverty alleviation to smallholder farmers in many regions of Sub-Saharan Africa, Asia and Latin America. However, a lack of accurate objective quantitative methods for this selection target in sweetpotato prevents a consistent and extensive assessment of large breeding populations. In this study, an approach to characterize and classify resistance in sweetpotato was established by assessing total yield loss and virus load after the infection of the three most common viruses (SPFMV, SPCSV, SPLCV).
View Article and Find Full Text PDFA previously uncharacterized torradovirus species infecting potatoes was detected by high-throughput sequencing from field samples from Peru and in customs intercepts in potato tubers that originated from South America in the United States of America and the Netherlands. This new potato torradovirus showed high nucleotide sequence identity to an unidentified isometric virus (SB26/29), which was associated with a disease named potato rugose stunting in southern Peru characterized over two decades ago. Thus, this virus is tentatively named potato rugose stunting virus (PotRSV).
View Article and Find Full Text PDFSweet potato virus disease (SPVD) is a global constraint to sweetpotato () production, especially under intensive cultivation in the humid tropics such as East Africa. The objectives of this study were to develop a precision SPVD phenotyping protocol, to find new SPVD-resistant genotypes, and to standardize the first stages of screening for SPVD resistance. The first part of the protocol was based on enzyme-linked immunosorbent assay results for sweet potato chlorotic stunt virus (SPCSV) and sweet potato virus C (SPVC) with adjustments to a negative control (uninfected clone Tanzania) and was performed on a prebreeding population (VZ08) comprising 455 clones and 27 check clones graft inoculated under screenhouse conditions.
View Article and Find Full Text PDFPotato virus V (PVV) causes a disease of potato () in South and Central America, Europe, and the Middle East. We report here the complete genomic sequences of 42 new PVV isolates from the potato's Andean domestication center in Peru and of eight historical or recent isolates from Europe. When the principal open reading frames of these genomic sequences together with those of nine previously published genomic sequences were analyzed, only two from Peru and one from Iran were found to be recombinant.
View Article and Find Full Text PDFGlobally, Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) occur frequently and in combination cause sweetpotato virus disease (SPVD). Many viral diseases are economically important and negatively impact the production and movement of germplasm across regions. Rapid detection of viruses is critical for effective control.
View Article and Find Full Text PDFPotato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop's main domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes plus 49 published genomic sequences were analyzed.
View Article and Find Full Text PDFSweet potato (Ipomoea batatas) ranks among the most important crops in the world and provides nutritional and economic sustainability for subsistence farmers in sub-Saharan Africa. Its production is mainly constrained by sweet potato virus disease (SPVD) caused by the coinfection of two positive-sense single-stranded RNA viruses, sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus (SPFMV). Current understanding of sweet potato responses to SPCSV and SPFMV at the molecular level remains very limited.
View Article and Find Full Text PDFForty-seven potato virus A (PVA) isolates from Europe, Australia, and South America's Andean region were subjected to high-throughput sequencing, and 46 complete genomes from Europe ( = 9), Australia ( = 2), and the Andes ( = 35) obtained. These and 17 other genomes gave alignments of 63 open reading frames 9,180 nucleotides long; 9 were recombinants. The nonrecombinants formed three tightly clustered, almost equidistant phylogroups; A comprised 14 Peruvian potato isolates; W comprised 37 from potato in Peru, Argentina, and elsewhere in the world; and T contained three from tamarillo in New Zealand.
View Article and Find Full Text PDFPotato yellowing virus (PYV, original code SB-22), an unassigned member of the Genus Ilarvirus Family Bromoviridae, has been reported infecting potatoes in Peru, Ecuador and Chile. It is associated with symptomless infections, however yellowing of young leaves has been observed in some potato cultivars. Thirteen potato and yacon isolates were selected after routine screening of CIP-germplasm and twenty-four were identified from 994 potato plants collected in Peru whereas one was intercepted from yacon in the UK.
View Article and Find Full Text PDF(PVY) causes disease in potatoes and other solanaceous crops. The appearance of its necrogenic strains in the 1980s made it the most economically important virus of potatoes. We report the isolation and genomic sequences of 32 Peruvian isolates of PVY which, together with 428 published PVY genomic sequences, gave an alignment of 460 sequences.
View Article and Find Full Text PDFAccurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived small interfering RNAs has proven to be a highly efficient approach for virus discovery. Here we present VirusDetect, a bioinformatics pipeline that can efficiently analyze large-scale small RNA (sRNA) datasets for both known and novel virus identification.
View Article and Find Full Text PDFThree hundred and ninety-four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses.
View Article and Find Full Text PDFThe complete genome of sweet potato latent virus (SPLV) was determined to be 10081 nucleotides long excluding the 3' poly (A) tail. The genome contains a single large open reading frame encoding a polyprotein of 3247 amino acids. Its genomic organization is typical of potyviruses and contains motifs conserved in members of the genus Potyvirus.
View Article and Find Full Text PDFThe complete nucleotide sequence of a sweet potato virus, first identified two decades ago as virus "C-6", was determined in this study. Sequence similarity and phylogenetic analysis clearly place it as a member of a distinct species within the genus Carlavirus, family Betaflexiviridae. Its genome structure was typical for that of other carlaviruses except that the ORF for the cysteine-rich protein was replaced by an ORF encoding a predicted protein with no similarity to any known protein.
View Article and Find Full Text PDFIn 2010, yam beans in a field trial in Peru showed viral disease symptoms. Graft-transmission and positive ELISA results using potyvirus-specific antibodies suggested that the symptoms could be the result of a potyviral infection. Small interfering RNA (siRNA) were extracted from one of the samples and sent for high-throughput sequencing.
View Article and Find Full Text PDFTwo serologically unrelated sweet potato viruses causing symptoms of vein clearing in the indicator plant Ipomoea setosa were isolated and their genomes have been sequenced. They are associated with symptomless infections in sweet potato but distinct vein-clearing symptoms and higher virus titres were observed when these viruses co-infected with sweet potato chlorotic stunt virus (SPCSV), a virus that is distributed worldwide and is a mediator of severe virus diseases in this crop. Molecular characterization and phylogenetic analysis revealed an overall nucleotide identity of 47.
View Article and Find Full Text PDFSweet potato chlorotic stunt virus (SPCSV) is probably the most important virus infecting sweetpotato worldwide, causing severe synergistic disease complexes with several co-infecting viruses. To date only one isolate (Ug), corresponding to the EA strain has been completely sequenced. It was later shown to be unusual in that, in contrast to most isolates, it encoded an additional p22 protein at the 3' end of RNA1.
View Article and Find Full Text PDFBemisia tabaci biotype B is considered to be the primary vector of Sweet potato chlorotic stunt virus (SPCSV, Crinivirus). However, Trialeurodes abutiloneus also has been shown to transmit SPCSV in a semipersistent manner. Mixed infection of SPCSV with the aphid-transmitted Sweet potato feathery mottle virus (SPFMV, Potyvirus) causes sweetpotato (Ipomoea batatas) virus disease (SPVD), the major virus disease affecting this crop.
View Article and Find Full Text PDFWe report the first identification of novel viruses, and sequence of an entire viral genome, by a single step of high-throughput parallel sequencing of small RNAs from diseased, as well as symptomless plants. Contigs were assembled from sequenced total siRNA from plants using small sequence assembly software and could positively identify RNA, ssDNA and dsDNA reverse transcribing viruses and in one case spanned the entire genome. The results present a novel approach which cannot only identify known viral pathogens, occurring at extremely low titers, but also novel viruses, without the necessity of any prior knowledge.
View Article and Find Full Text PDFSeveral potyviruses are found infecting sweet potato (Ipomoea batatas) in Peru, of which sweet potato feathery mottle virus (SPFMV, genus Potyvirus) is the most common. However, sequence data for these viruses are not available from Peru. In this study, the 3'-terminal approximately 1,800 nucleotide sequences of 17 potyvirus samples collected from the six main sweet potato-producing areas of Peru over the past 20 years were determined and analyzed.
View Article and Find Full Text PDFCo-infection of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus) with Sweet potato feathery mottle virus (SPFMV, genus Potyvirus) results in sweet potato virus disease (SPVD), a synergistic disease that is widely distributed in the sweet potato (Ipomoea batatas) growing regions of the world. Since both SPCSV and SPFMV are common and often detected as part of multiple co-infections of severely diseased plants, the occurrence of synergistic interactions with other viruses was investigated. Data from this study show that SPCSV, but not SPFMV, can cause synergistic diseases in sweet potato with all viruses tested, including members of the genus Potyvirus (Sweet potato latent virus, Sweet potato mild speckling virus), Ipomovirus (Sweet potato mild mottle virus), Cucumovirus (Cucumber mosaic virus), and putative members of the genus Carlavirus (Sweet potato chlorotic fleck virus and C-6 virus).
View Article and Find Full Text PDF