Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world's arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp.
View Article and Find Full Text PDFThe complete nucleotide sequence of the isolate C1 of Sweet potato feathery mottle virus (SPFMV) strain C and the 5' region of several other strains were determined and analyzed together with the sequences of isolates representing the EA, RC and O strains. This provided molecular evidence for the reclassification of SPFMV strains into two species and the occurrence of a complex recombinant isolate. Analysis also revealed a hypervariable domain in the P1 protein, which separates an N-terminal region unique to SPFMV and members of the ipomovirus species Sweet potato mild mottle virus from the C-terminal protease domain, which is conserved among all potyviruses.
View Article and Find Full Text PDFWe report the first identification of novel viruses, and sequence of an entire viral genome, by a single step of high-throughput parallel sequencing of small RNAs from diseased, as well as symptomless plants. Contigs were assembled from sequenced total siRNA from plants using small sequence assembly software and could positively identify RNA, ssDNA and dsDNA reverse transcribing viruses and in one case spanned the entire genome. The results present a novel approach which cannot only identify known viral pathogens, occurring at extremely low titers, but also novel viruses, without the necessity of any prior knowledge.
View Article and Find Full Text PDF