Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Periodontitis is a chronic inflammatory disease and macrophages play a pivotal role in the progression of periodontitis. Mesenchymal stem cells (MSCs) have emerged as potential therapeutic agents for the treatment of periodontitis due to their immunomodulatory properties and capacity for tissue regeneration. Compared to conventionally derived MSCs, induced pluripotent stem cell-derived MSCs (iMSCs) offer distinct advantages as promising candidates for MSC-based therapies, owing to their non-invasive acquisition methods and virtually unlimited availability. This study aims to investigate the effects and mechanisms of iMSCs in modulating macrophage polarization and alleviating periodontitis-related alveolar bone loss.

Methods: iMSCs were generated from iPSCs and characterized for differentiation potential. The effects of iMSCs on macrophage polarization were evaluated using THP-1-derived macrophages under inflammatory conditions (LPS and IFN-γ stimulation). Co-culture assays, cytokine analysis, reactive oxygen species (ROS) detection, transcriptomic analysis, flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to elucidate the underlying mechanisms. The therapeutic potential of iMSCs was assessed in a ligature-induced periodontitis mouse model using micro-CT, histological analysis, and immunofluorescence staining.

Results: iMSCs inhibit M1 macrophage polarization through the suppression of the NF-κB signaling pathway. Additionally, iMSCs reduce the production of pro-inflammatory cytokines (IL-1β, IL-17) and reactive oxygen species (ROS), while enhancing the secretion of anti-inflammatory cytokines (IL-10) and growth factors (VEGF), thereby improving the inflammatory microenvironment. Under inflammatory conditions, iMSCs preserve the osteogenic potential of periodontal ligament stem cells (PDLSCs) and alleviate alveolar bone loss in mice with periodontitis. In vivo, iMSCs reduce the number of M1 macrophages and inhibit the activation of NF-κB in periodontal tissues, supporting their anti-inflammatory and immunomodulatory effects.

Conclusion: iMSCs demonstrate significant therapeutic potential in periodontitis by modulating macrophage polarization, reducing oxidative stress, and mitigating alveolar bone loss associated with the disease. These findings provide new insights into the mechanisms of iMSCs and their application as cell-based therapies for periodontal diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046914PMC
http://dx.doi.org/10.1186/s13287-025-04327-0DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
20
alveolar bone
16
stem cells
12
imscs
12
bone loss
12
induced pluripotent
8
pluripotent stem
8
stem cell-derived
8
mesenchymal stem
8
imscs inhibit
8

Similar Publications

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.

Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.

View Article and Find Full Text PDF

Objectives: In this study, we explored the mechanism by which DDIT4 influences the polarization phenotypic transformation of macrophages and inflammation through the regulation of mTOR signaling pathway, providing a new mechanism and target for the treatment of diabetic nephropathy.

Methods: The degree of inflammation and injury in renal tissues of diabetic kidney disease (DKD) animal model was evaluated using biochemical assays, renal pathology examinations, and Western blot tests. Podocytes and macrophages were isolated from renal tissues to observe the extent of podocyte injury and the quantity and polarization phenotype of macrophage infiltration.

View Article and Find Full Text PDF

Regeneration of infected bone defects (IBDs) requires biomaterials capable of dynamically coordinating antimicrobial, anti-inflammatory, and osteogenic functions. Overcoming the spatiotemporal mismatches in treating IBDs remains a critical challenge. Here, we designed a temporally controlled therapy based on gelatin methacrylate (GelMA)-based nanocomposite hydrogels (GCS) coembedded with sulfur quantum dots (SQDs) nanoenzymes and calcium-phosphorus oligomers (CPOs.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Fever is a prevalent clinical symptom and is usually caused by inflammation or infection. Persistent high fever can lead to delirium, coma and convulsions, causing brain damage. Angong Niuhuang Pill (ANP), a traditional Chinese emergency medicine, has been employed in clinical practice for centuries, with well-documented antipyretic effects.

View Article and Find Full Text PDF