98%
921
2 minutes
20
One of the main challenges in medical applications is achieving precise spatial and temporal control over the release of active molecules, such as neurotransmitters. To address this issue, we engineered a nanovalve that can deliver active molecules on demand by activating or deactivating a light-sensitive chemical barrier. This valve is composed of a polymer containing a spiropyran moiety, which can switch from a hydrophobic to a hydrophilic state upon photo-stimulation. Accordingly, the nanovalve either blocks or allows molecular diffusion through a solid-state nanopore array. Here, we demonstrate that the system blocks up to 96% of the translocation of the neurotransmitter glutamate and that the on-demand release of glutamate upon light stimulation reaches 60 μM h, mimicking a physiological synaptic release rate. We proved its cytocompatibility and analyzed its potential for the stimulation of primary neurons and blind retinal explants by patch-clamp experiments. These results represent a milestone for the development of biomimetic neuroprostheses restoring chemical synaptic transmission lost by degeneration or delivering drugs in a light-controlled fashion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5mh00082c | DOI Listing |
J Org Chem
September 2025
A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St, Irkutsk 664033, Russian Federation.
In this work, the superbase-mediated self-organization of tetrasubstituted pyrroles from three molecules of acetylenes and one molecule of nitriles was theoretically investigated. On the example of interaction of phenylacetylene with benzonitrile in the KOBu/DMSO medium, three possible pathways of the assembly of 2-benzyl-3,5-diphenyl-4-phenylethynyl-1-pyrrole have been studied using a combined B2PLYP-D3/6-311+G**//B3LYP-D3/6-31+G* quantum chemical approach. The calculated activation barriers correspond to mild reaction conditions (room temperature for 15 min).
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
Protoporphyrinogen oxidase (PPO, EC 1.3.3.
View Article and Find Full Text PDFSci Adv
September 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.
Insects, unlike vertebrates, use heteromeric complexes of odorant receptors and co-receptors for olfactory signal transduction. However, the secondary messengers involved in this process are largely unknown. Here, we use the olfactory signal transduction of the aggregation pheromone 4-vinylanisole (4VA) as a model to address this question.
View Article and Find Full Text PDFSci Adv
September 2025
Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
Regulatory T cells are essential for immune homeostasis. While CD4 T cells are well characterized, CD8 T cells remain less understood and are primarily observed in pathological or experimental contexts. Here, we identify a naturally occurring CD8 regulatory precursor T cell at the steady state, defined by a CD8HLA-DRCD27 phenotype and a transcriptome resembling CD4 T cells.
View Article and Find Full Text PDFJ Med Chem
September 2025
Encoded Technologies, Molecular Modalities Discovery, GSK, Cambridge, Massachusetts 02140, United States.
DNA-encoded libraries (DELs) are used throughout small-molecule drug discovery to identify new lead compounds for protein targets. DEL hits are traditionally evaluated via off-DNA resynthesis and subsequent biological testing. This approach can be time- and resource-intensive, limiting the number of putative hits selected for follow-up.
View Article and Find Full Text PDF