98%
921
2 minutes
20
Background: Allergic asthma is an inflammatory disease of the airways that causes great distress to the patient's normal life. Astragalus Polysaccharide (APS) is the main active ingredient in the traditional Chinese medicine Astragalus mongholicus Bunge, which has the effect of regulating immune function.
Objective: This study aimed to evaluate the effect of APS on allergic asthma and investigate its potential mechanism of action.
Methods: This study utilized network pharmacology to predict the relevant targets and signaling pathways of APS treatment for allergic asthma. Subsequently, an animal model was established using Ovalbumin (OVA) induction. The efficacy of APS was verified using histopathologic staining and Airway Hyperresponsiveness (AHR) assay. Signaling pathways were examined using Western Blot (WB). Finally, bioinformatics analysis was utilized to explore the correlation between the progression of allergic asthma and signaling pathways.
Results: Network pharmacology analysis identified 15 intersection targets significantly enriched in the PI3K/AKT signaling pathway. The results of molecular docking showed that small molecule drugs have a strong binding ability to target proteins. The experiments confirmed APS successfully suppressed the pathological symptoms in allergic asthma model mice. Subsequently, WB provided evidence supporting that APS has potential therapeutic effects mediated through the PI3K/AKT signaling pathway. The bioinformatics results confirmed that disease progression in allergic asthma patients does correlate with the PI3K/AKT signaling pathway.
Conclusion: Our study suggests that APS may treat allergic asthma by targeting the PI3K/AKT signaling pathway. This provides a basis for preliminary research on the clinical application of APS for treating allergic asthma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0113862073368307250409055727 | DOI Listing |
Environ Health Prev Med
September 2025
Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan.
Background: Organic chemicals have been known to cause allergic diseases such as bronchial asthma and hypersensitivity pneumonitis; however, the possibility that they do not cause irreversible pulmonary fibrosis has not been considered. Polyacrylic acid (PAA), an organic chemical, has caused irreversible progressive pulmonary fibrosis in exposed workers, indicating its potential to induce pulmonary inflammation and fibrosis. Although intratracheal instillation studies are commonly used for evaluating lung pathology, traditional methods face challenges with chemical substances, particularly nanoparticles, which tend to aggregate in suspension and prevent uniform pulmonary distribution.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
September 2025
COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Background: Studies have described sex differences in childhood asthma, allergy, and atopic dermatitis, but the development and clinical phenotype of these differences remain poorly understood.
Objective: To characterize sex differences in atopic disease throughout childhood and study the potential role of sex-steroid metabolites.
Methods: We examined sex differences in asthma, allergy, and atopic dermatitis using longitudinal generalized estimating equation models in the COPSAC (n=411) and COPSAC (n=700) birth cohorts.
J Allergy Clin Immunol
September 2025
Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA. Electronic address:
Background: Genetic control of gene expression in asthma-related tissues is not well-characterized, particularly for African-ancestry populations, limiting advancement in our understanding of the increased prevalence and severity of asthma in those populations.
Objective: To create novel transcriptome prediction models for asthma tissues (nasal epithelium and CD4+ T cells) and apply them in transcriptome-wide association study to discover candidate asthma genes.
Methods: We developed and validated gene expression prediction databases for unstimulated CD4+ T cells and nasal epithelium using an elastic net framework.
J Bras Pneumol
September 2025
. Programa de Pós-Graduação em Ciências Médicas, Universidade Federal de Santa Catarina, Florianópolis (SC) Brasil.
Objective: To describe the impact of severe asthma in a real-life cohort in Brazil, reporting on baseline clinical characteristics, access to treatment, and clinical remission under treatment with biologics.
Methods: Severe asthma patients > 6 years of age were recruited from 23 centers in Brazil. Data on clinical characteristics, lung function, biomarkers, prescribed therapies, and clinical remission under treatment were collected at the baseline visit.
Minerva Pediatr (Torino)
September 2025
Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy.
Allergen immunotherapy (AIT) is the only treatment capable of modifying the natural history of allergic diseases by promoting immune tolerance. Initially developed for respiratory allergies, AIT has expanded to include food allergies, particularly through oral immunotherapy (OIT). This review explores the historical evolution, current applications, and future directions of AIT in pediatric patients.
View Article and Find Full Text PDF