98%
921
2 minutes
20
Background: Glutathione S-transferases (GSTs) are essential multifunctional enzymes. In the face of abiotic stresses such as drought and heavy metal exposure, plants utilize GSTs for detoxification and antioxidant defense, as these enzymes facilitate the conjugation of glutathione (GSH) with toxic compounds. Specific details of this process, however, remain unknown.
Results: This study identified 118 Avena sativa GST (AsGST) genes within the A. sativa genome and classified them into five subfamilies: Tau, Phi, Zeta, Lambda, and EF1Bγ. Phylogenetic analysis revealed that AsGSTs exhibit significant similarity to corresponding GST categories in Arabidopsis thaliana and Oryza sativa, indicating a possible common ancestor. Gene structure and conserved motif analysis demonstrated that AsGST genes within the same subfamily shares similarities in the number and positioning of exons and introns, as well as in motif composition, suggesting that these genes may perform analogous biological functions in A. sativa. The promoter regions of the identified genes are enriched with various cis-acting elements that play roles in plant growth and development, stress response, and hormone signaling. Transcriptomic analysis and real-time quantitative PCR (RT-qPCR) validation indicated that the expression of four AsGST genes (AsGSTU12, AsGSTU13, AsGSTU14, and AsGSTU15) was significantly up-regulated in the roots of A. sativa under both PEG-induced drought stress and CdCl-induced cadmium stress. These genes likely regulate reactive oxygen species (ROS) levels by catalyzing their scavenging through glutathione (GSH) substrates, and may also participate in ABA signaling and the maintenance of osmotic homeostasis. Under cadmium stress, these genes may mitigate cadmium toxicity by enhancing the chelation and sequestration of cadmium via GSH or through its compartmentalization, as evident from the subcellular localization studies.
Conclusion: This study systematically described the GST gene family in A. sativa, characterized its expression patterns and potential functions in response to drought and cadmium stress, and confirmed the essential role of the AsGST gene family in mediating stress responses. The findings enhance our understanding of the mechanisms underlying stress tolerance and offer valuable genetic resources for breeding stress-tolerant A. sativa. The work also provides a theoretical framework and identifies gene targets for the development of stress-resistant A. sativa varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032658 | PMC |
http://dx.doi.org/10.1186/s12870-025-06559-x | DOI Listing |
Pestic Biochem Physiol
November 2025
College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,
As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFMicrobiol Res
September 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
Cadmium (Cd) contamination in coastal regions poses severe environmental risks, yet bacterial defense mechanisms against Cd remain poorly understood. This study unveils distinct tolerant strategies of two highly Cd-tolerant bacteria isolated from the Yangtze River estuary: Comamonas sp. Y49 and Aeromonas sp.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
Faculty of Applied Ecology, Agricultural Science and Biotechnology, University of Inland Norway, Elverum, Norway.
Soil contamination with salinity and heavy metals such as cadmium (Cd) is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizobacteria PGPR and organic agents such as salicylic acid (SA) are considered major protectants to alleviate abiotic stresses, the study of these bacteria and organic acids to ameliorate the toxic effects of salinity and Cd remains limited. Therefore, the present study was conducted to investigate the individual and combined effects of PGPR and SA on enhancing the phytoremediation of salinity (100 mM NaCl) and Cd (50 µM CdCl₂) using rice ( L.
View Article and Find Full Text PDFBiometals
September 2025
Fish Research Centre, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt.
Bioaccumulation of metals and metalloids in marine environments poses a significant risk to both human and aquatic health, with seasonal fluctuations substantially influencing its dynamics and magnitude. This study investigated the impact of metals and metalloids exposure on the health of Wallago attu (Wallago catfish) and Catla catla (Indian carp) inhabiting the Head Siphon, Mailsi, Pakistan. This study involved the seasonal (May 2022, October 2022, April 2023) assessment of physicochemical properties and the concentrations of several metals and metalloids-copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), nickel (Ni), zinc (Zn), and iron (Fe)-in water samples.
View Article and Find Full Text PDF