Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, the potential neurotoxicity of inhaled anesthetics on the developing brain has increasingly garnered attention, yet its mechanism remains unclear. Parthanatos is a newly discovered form of programmed cell death dependent on PARP-1, and it is believed to be closely associated with cellular oxidative stress response. However, it is still to be proven whether isoflurane, a commonly used clinical anesthetic, can induce parthanatos in developing brain neurons and whether it activates the oxidative stress signaling pathway in neuronal cells. In this study, we treated SH-SY5Y cells and rat hippocampus neuron cells (RN-h) with isoflurane, measured cell viability using the MTT assay, examined the activation of the parthanatos-related PARP-1/AIF/PAR signaling pathway using western blot analysis, detected the accumulation of ROS using DCFH-DA, detected mitochondrial membrane potential (Δψm) by a JC-1 assay, and assessed the activation of the oxidative stress-related JNK signaling pathway using western blot. In vivo, we examined the damaging effects of inhaled isoflurane on neonatal rat hippocampal neurons using HE staining. The results showed that 2% and 4% concentrations of isoflurane significantly inhibited cell survival and upregulated the expression levels of PARP-1, AIF, and PAR in both types of neuronal cells. Moreover, isoflurane significantly enhanced ROS levels and decreased Δψm, and activated the JNK signaling pathway in both cell types. Importantly, we found that pretreatment with N-Acetylcysteine (NAC) could inhibit isoflurane-induced parthanatos and the accumulation of ROS in cells, as well as the activation of the JNK pathway. The experimental results in neonatal rats also demonstrated that isoflurane led to significant neuronal death in the hippocampal CA1 region. However, pretreatment with NAC significantly increased the survival rate of pyramidal neurons in this region. In summary, through our experiments, we confirmed that isoflurane can induce parthanatos in neuronal cells, and NAC can decrease ROS accumulation in neuronal cells and thus mitigate the damage isoflurane causes to neuronal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018870PMC
http://dx.doi.org/10.1002/jbt.70268DOI Listing

Publication Analysis

Top Keywords

signaling pathway
20
neuronal cells
20
developing brain
8
oxidative stress
8
isoflurane
8
induce parthanatos
8
cells
8
pathway western
8
western blot
8
accumulation ros
8

Similar Publications

Background: C-C motif chemokine ligand 3 (CCL3) is a crucial chemokine that plays a fundamental role in the immune microenvironment and is closely linked to the development of various cancers. Despite its importance, there is limited research regarding the expression and function of CCL3 in nasopharyngeal carcinoma (NPC). Therefore, this study seeks to examine the expression of CCL3 and assess its clinical significance in NPC using bioinformatics analysis and experiments.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.

View Article and Find Full Text PDF

Bortezomib resistance in multiple myeloma (MM) is a significant clinical challenge that limits the long-term effectiveness. Currently, there is a lack of reliable biomarkers to predict bortezomib resistance. Previous studies reported that several proteins regulate bortezomib resistance through targeting ubiquitin-proteasome pathways, including heat shock protein family A member 9 (HSPA9), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), proteasome 26S subunit non-ATPase 14 (PSMD14), and tripartite motif containing 21 (TRIM21).

View Article and Find Full Text PDF