98%
921
2 minutes
20
The rapid expansion of photovoltaic (PV) technology has raised concerns about sustainable PV waste management, particularly in India, where inadequate infrastructure and technical limitations hinder effective recycling. Addressing these challenges is crucial for minimizing environmental risks and promoting a circular economy in the renewable energy sector. This study presents a smart multi-criteria decision-making (MCDM) approach that integrates Principal Component Analysis (PCA) and the Analytic Hierarchy Process (AHP) to assess technological challenges in PV waste management. PCA is applied to prioritize key challenges, while AHP evaluated their interrelationships through criteria weights. Despite the effectiveness of PCA and AHP, their combined application in PV waste recovery remains underexplored, particularly in the Indian context. Eight key challenges are identified, with hazardous recycling methods (83.2%) and low recycling potential (83.4%) ranking highest in PCA. AHP results highlighted the lack of advanced recycling technology (0.2298) and hazardous recycling methods (0.2084) as the most critical barriers. A multi-criteria utility function is developed to illustrate these interdependencies. This research bridges critical knowledge gaps by offering data-driven insights into PV waste recovery in India, contributing to sustainable waste management strategies and the development of an efficient recycling framework.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003203 | PMC |
http://dx.doi.org/10.1002/gch2.202400300 | DOI Listing |
Environ Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Mining metals for the advancement of society requires innovative and cost-effective remediation strategies that protect the environment and, ideally, allow for concentration and recovery of metals from waste streams. Microbially mediated strategies that remove metals from aqueous waste streams via sorption and/or oxidation-reduction reactions show promise as eco-friendly, cost-effective solutions. Our objective was to use Mn-oxidizing fungi, isolated from the Soudan Underground Mine State Park, MN, a high-salinity, mine-impacted environment, to sequester transition metals Mn, Co, Cu, and Ni.
View Article and Find Full Text PDFACS Omega
September 2025
Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, P. R. China.
With the rapid development of precision medicine and the continuous evolution of smart wearable devices, photothermal materials (PTMs) are experiencing a tremendous opportunity for growth. PTMs can efficiently convert light energy into heat to achieve localized thermal therapy for specific cells or tissues, offering advantages of minimal invasiveness, high selectivity, and precise targeting. Furthermore, PTMs can serve as molecular imaging probes and smart drug carriers, integrating multiple functions such as bioimaging and drug delivery to realize the visualization and controlled release of therapeutic processes.
View Article and Find Full Text PDFFood Chem X
August 2025
Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Vegetable side streams are resulting non-edible by-products from vegetable processing. These side streams are a rich source of bioactive compounds and macromolecules. Despite their potential for high-value applications, these materials are frequently used in low-value applications or discarded, contributing to resource depletion and environmental concerns.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China.
Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.
View Article and Find Full Text PDF