98%
921
2 minutes
20
The increasing use of computed tomography (CT) has led to a rise in cumulative radiation dose due to medical imaging, raising concerns about potential long-term adverse effects. Large-scale epidemiological studies indicate a higher tumor incidence associated with CT examinations, but the underlying biological mechanisms remain largely unexplained. To gain further insights into the cellular response triggered by routine CT diagnostics, we investigated CT-induced changes of gene expression in peripheral blood cells using whole transcriptome sequencing. RNA was isolated from peripheral blood cells of 40 male patients with asymptomatic microhematuria, sampled before and after multi-phase abdominal CT (CTDIvol: 3.75-26.95 mGy, median: 6.55 mGy). On average, 22.11 million sequence reads (SD 5.71) per sample were generated to identify differentially expressed genes 6 h post-exposure by means of DESeq2. To assess the dose dependency of CT-induced effects, we additionally divided samples into three categories: low exposure (≤6.55 mGy, n = 20), medium exposure (>6.55 mGy and <12 mGy, n = 16), and high exposure (≥12 mGy, n = 4), and repeated gene expression analysis for each subset and their corresponding prae-exposure sample. CT exposure caused consistent and dose-dependent upregulation of six genes (, , , , , and ; padj < 0.1). These genes share several functional commonalities, including regulation by TP53 and involvement in the DNA damage response. The biological pathways highlighted by Gene Set Enrichment Analysis (GSEA) suggest a dose-dependent increase of cellular damage and metabolic particularities in the low-exposure subset, which may be related to a potential adaptive cellular response to low-dose irradiation. Irrespective of applied dose, emerged as the most robust biomarker for CT exposure among all genes. Routine abdominal CT scans cause dose-dependent gene deregulation in association with DNA damage in peripheral blood cells after in vivo exposure. Regarding risk assessment of CT, our results support the commonly applied "As Low-As -Reasonably Achievable (ALARA)" principle. Evidence of additional gene expression changes associated with metabolic processes indicates a rather complex molecular response beyond DNA damage after CT exposure, and emphasizes the need for further targeted investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11989232 | PMC |
http://dx.doi.org/10.3390/ijms26073185 | DOI Listing |
Nanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFEur J Case Rep Intern Med
July 2025
Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA.
Background: Thrombotic thrombocytopenic purpura (TTP) is a life-threatening hematologic emergency caused by ADAMTS13 deficiency, leading to microvascular thrombosis, haemolytic anaemia, thrombocytopenia, and end-organ damage. Neurological symptoms occur in up to 90% of cases and are frequently misdiagnosed as stroke. Prompt recognition and treatment reduce the mortality rate from over 90% to 10-20%.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Front Immunol
September 2025
Institute of Pulmonary Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).
View Article and Find Full Text PDFFront Oncol
August 2025
Department Hematopathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
Background: Mixed-phenotype acute leukemia (MPAL) is a rare acute leukemia for which data are currently not available to guide therapy. It has a poor outcome, particularly in elderly patients.
Case Presentation: We report the successful use of venetoclax/azacitidine as treatment for a treatment-naive elderly patient with early T-cell precursor (ETP)/myeloid MPAL.