Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We previously found that host-guest interactions can drive gingerols (Gs) and cyclodextrins (CDs) together to form inclusion complexes (G/CD), which can further construct amphiphilic microcrystals and resultant Pickering emulsions through self-assembly. In this follow-up study, we explored the detailed formation processes and mechanisms of the 6-G/β-CD inclusion complex and the resultant Pickering emulsion. The influence of the 6-G/β-CD molar ratio on the structure, morphology, and loading capacity of the inclusion complex and resultant Pickering emulsion were investigated. The results show that the cyclodextrin-based Pickering emulsion can load 6-G in two places; one place is the cyclodextrin cavity, whose loading capacity is up to 9.28%, while the other one is the Pickering core, with its highest loading capacity at 32.31% when the 6-G/β-CD molar ratio is 5:1. In the above case, the 6-G/β-CD inclusion complex was found to form a unit cell with a 1:2 molar ratio and then self-assemble into amphiphilic microcrystals through cage-type arrangement structures at the oil-water interface, mainly driven by van der Waals forces and hydrogen bonds. This study is helpful in the design and preparation of CD-based high-loading carriers for bioactive compound delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942410PMC
http://dx.doi.org/10.3390/foods14061066DOI Listing

Publication Analysis

Top Keywords

pickering emulsion
16
resultant pickering
12
inclusion complex
12
molar ratio
12
loading capacity
12
cyclodextrin-based pickering
8
cyclodextrin cavity
8
pickering core
8
amphiphilic microcrystals
8
6-g/β-cd inclusion
8

Similar Publications

Three-dimensional printing (3DP) technology enables the flexible fabrication of integrated monolithic microextraction chips for high-throughput sample pretreatment. Meanwhile, the extraction performance of 3DP-based channels is largely limited by printer resolution and the commercially available printing materials. In this work, a 3DP array monolithic microextraction chip (AMC) was fabricated by integrating 26-array helical monolithic microextraction channels for sample pretreatment and 52-array gas valves for fluid control.

View Article and Find Full Text PDF

Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).

View Article and Find Full Text PDF

Multifaceted characterization of lactoferrin and (-)-epigallocatechin-3-gallate (EGCG) interactions: development of the pickering emulsions for microencapsulated functional foods.

Food Res Int

November 2025

Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; Haikou Key Laboratory of Special Foods, Haikou, Hainan 570228, China.

In this study, we explored the application of lactoferrin-(-)-epigallocatechin-3-gallate (LF-EGCG) complex with rapeseed, soybean, walnut, peanut and sesame oil for the preparation of Pickering emulsions and its spray-dried microcapsules. Spectroscopy and molecular docking revealed that LF-EGCG binds via hydrogen bonds, hydrophobic interactions, and van der Waals forces. Structural analysis demonstrated that 0.

View Article and Find Full Text PDF

Effect of pH and Particle Charge on the Interfacial Properties of Biocatalytic Pickering Emulsions─Where Are the Enzymes Located?

Langmuir

September 2025

Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.

Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.

View Article and Find Full Text PDF

Oil Delivery to Bovine Satellite Cells in Cultivated Meat by Soy Protein Colloidosomes.

ACS Appl Mater Interfaces

September 2025

Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion 7505101, Israel.

Cultivating fat for edible tissue presents significant challenges, due to the high costs associated with growth and differentiation factors, alongside the poor viability of adipocytes resulting from cell clustering. Additionally, there is a gap in research regarding the rapid accumulation of fats within cells. To that end, this study presents the development of a biodegradable soy protein colloidosome system for an efficient application: direct delivery of oils into bovine satellite cells, enabling rapid intracellular fat accumulation without the need for adipogenic differentiation.

View Article and Find Full Text PDF