Integrated transcriptome and metabolome analysis reveals the impacts of prolonged light exposure on starch and protein content in maize kernels.

BMC Genomics

State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The light environment significantly influences crop growth, development, quality, and yield, particularly in controlled-environment agriculture. Recent advances in artificial lighting technology have allowed growers to precisely control the light environment in terms of duration, spectrum, and intensity. Starch and protein are the most significant nutritional constituents of maize kernels. However, little is known about the effects of the light environment on starch and protein content in maize kernels. Therefore, we investigated the effects of natural light and supplemental exposure to blue (B), far-red (FR), and red (R) light on starch and protein content in kernels of the inbred maize line B73.

Results: Exposure to supplemental B, FR, or R light resulted in significant increases in starch content but decreases in protein content. Notably, protein content was lowest under B light. Substantial proportions of genes (5.03-75.23%) and metabolites (46.89-85.64%) were regulated by different wavelengths of light. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, as well as weighted gene co-expression network analysis (WGCNA), revealed that differentially expressed genes (DEGs) under B, FR, and R light were involved in pathways related to starch and protein synthesis. KEGG metabolomic analysis showed that differentially abundant metabolites (DAMs) were primarily associated with histidine, D-amino acid, cysteine, and methionine metabolism. Nine DEGs related to starch synthesis were identified as potential candidates for investigating the effects of light quality on starch synthesis, and 14 DEGs related to protein synthesis provided evidence for the influence of light quality on protein synthesis in maize.

Conclusions: This study identified the regulatory network governing starch and protein content in B73 maize kernels under different light conditions, contributing to a deeper understanding of how light quality affects the nutritional components of maize kernels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998427PMC
http://dx.doi.org/10.1186/s12864-025-11578-xDOI Listing

Publication Analysis

Top Keywords

starch protein
24
protein content
24
maize kernels
20
light
14
light environment
12
protein synthesis
12
light quality
12
protein
10
starch
9
content maize
8

Similar Publications

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).

View Article and Find Full Text PDF

Modification of starch traits in commercial wheat through TaWaxy gene editing.

Carbohydr Polym

November 2025

State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Amylose content (AC) is a key determinant of wheat quality, and the TaWaxy gene determined amylose synthesis with a dose-dependent effect on AC. In this study, the TaWOX5 gene, which significantly enhances wheat transformation efficiency, was combined with CRISPR/SpCas9 system to generate TaWaxy mutants in a commercial winter wheat Jimai 22. Seven transgene-free mutant types were produced, compared to only three transgene-free mutants in the spring wheat variety Ningchun 4.

View Article and Find Full Text PDF

Microstructural and crystallinity changes in starch-gluten model dough with varying palm oil solid fat content.

Carbohydr Polym

November 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Provi

This study explored the changes in starch-protein-oil interactions during dough mixing and thermal-treated processes using palm oils with different melting points of 38 °C (PO38), 32 °C (PO32), and 24 °C (PO24), and their impact on roasted products quality. The solid fat content (SFC) of PO38, PO32, and PO24 were 29.35 %, 21.

View Article and Find Full Text PDF

Unravelling the mechanism of enzymatic resistance in different high amylose starch granules.

Carbohydr Polym

November 2025

Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address:

This study investigates the phenomenon that, in contrast to amylopectin-rich starch granules, high amylose starch (HAS) granules typically exhibit high hydrolytic resistance manifested as low density of enzyme attack sites on the starch granule surface. However, among the various types of examined HAS granules, we identified differences in enzymatic resistance. We associated this effect as a result of variations in specific rate of the enzymatic reaction, with intermediate affinity leading to the highest enzymatic efficacy characteristic for the Sabatier principle.

View Article and Find Full Text PDF