98%
921
2 minutes
20
Conventional implantable electronic sensors for continuous monitoring of internal tissue strains are yet to match the biomechanics of tissues while maintaining biodegradability, biocompatibility and wireless monitoring capability. Here we present a two-dimensional phononic crystal composed of periodic air columns in soft hydrogel, which was named ultrasonic metagel, and we demonstrate its use as implantable sensor for continuous and wireless monitoring of internal tissue strains. The metagel's deformation shifts its ultrasonic bandgap, which can be wirelessly detected by an external ultrasonic probe. We demonstrate ex vivo the ability of the metagel sensor for monitoring tissue strains on porcine tendon, wounded tissue and heart. In live pigs, we further demonstrate the ability of the metagel to monitor tendon stretching, respiration and heartbeat, working stably during 30 days of implantation, and we loaded the metagel with growth factors to achieve different healing rates in subcutaneous wounds. The metagel results almost completely degraded 12 weeks after implantation. Our finding highlights the clinical potential of the ultrasonic sensor for tendon rehabilitation monitoring and drug delivery efficacy evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41551-025-01374-z | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008.
Objectives: Patients with connective tissue diseases (CTD) have a high incidence of cardiac involvement, which often presents insidiously and can progress rapidly, making it one of the leading causes of death. Multiparametric cardiovascular magnetic resonance (CMR) provides a comprehensive quantitative evaluation of myocardial injury and is emerging as a valuable tool for detecting cardiac involvement in CTD. This study aims to investigate the correlations between CMR features and serological biomarkers in CTD patients, assess their potential clinical value, and further explore the impact of pre-CMR immunotherapy intensity on CMR-specific parameters, thereby evaluating the role of CMR in the early diagnosis of CTD-related cardiac involvement.
View Article and Find Full Text PDFJ Control Release
September 2025
Department of Bioengineering, Rice University, Houston, TX, USA. Electronic address:
The development of continuous-release devices or injectables for the long-term delivery of biologics is of great interest, especially monoclonal antibodies (mAbs) that require frequent, high-dose injections. Preclinical testing of these technologies in murine models is necessary for clinical translation; however, xenogeneic responses to the mAb and foreign body responses to the implants or injectables can confound results. Immune system knockout (KO) models that affect immune cells are often used in these experiments, but the effects of KO models on mAb pharmacokinetics (PK) are not well characterized.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, PR China. Electronic address:
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the leading causes of morbidity and mortality worldwide, particularly in low- and middle-income countries. The extensive use of antibiotics has led to the emergence of multidrug-resistant and extensively drug-resistant MTB strains, intensifying the challenges associated with TB treatment. In this context, host-directed immunotherapy has emerged as a promising adjunct strategy that aims to modulate the host immune response rather than directly targeting the pathogen.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
The Materials Engineering Department, Faculty of Engineering, Kasetsart University, Phaholyothin Rd., Bangkok 10900, Thailand. Electronic address:
A prototype bioactive calcium phosphate model-specifically hydroxyapatite (HA) derived from eggshells-was developed using a sodium silicate (NaSiO) solution as an inorganic binder, precursor, and reinforcing agent, in combination with collagen nanofibers for bone engineering applications. The sodium silicate solution, functioning as a waterglass adhesive, introduced cohesive forces within the hydroxyapatite matrix, thereby enhancing its physical, chemical, and mechanical properties. Eggshell-derived bioactive hydroxyapatite offers several advantages, including non-toxicity, biocompatibility, collagen adhesion, and the ability to mimic bone structure, making it suitable for tissue engineering.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2025
Department of Mechanical Engineering, University of Louisiana at Lafayette, LA, 70503, USA. Electronic address:
Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) significantly impact articular cartilage biomechanical properties in osteoarthritis (OA). However, comprehensive understanding of biomechanical responses and the efficacy of potential therapeutic interventions remains limited. This study investigates how MMPs and ADAMTS synergistically degenerate cartilage biomechanical properties under different loading conditions, and evaluates the preventive role of cartilage oligomeric matrix protein (COMP) and tissue inhibitor of metalloproteinase-3 (TIMP-3).
View Article and Find Full Text PDF