98%
921
2 minutes
20
The RUNX1/AML1 transcription factor is one of the key regulators of definitive hematopoietic development in mice. However, its role in early human hematopoiesis remains poorly investigated. In this study, we integrated a tdTomato reporter cassette into the RUNX1 locus of human pluripotent stem cells (hPSCs) to monitor and block the expression of the gene during hPSC differentiation. This approach demonstrated that expression of RUNX1 starts early in mesodermal specification focusing later on hemogenic endothelium (HE) and nascent hematopoietic cells. Lack of RUNX1 halted the development of CD43+ and CD235-CD45+ hematopoietic cells, preventing the production of clonogenic hematopoietic progenitors including the multilineage ones. The abrogation of RUNX1 resulted in the failure of definitive lineages, specifically T and NK cells. Remarkably, we instead observed the accumulation of RUNX1-null HE cells at the stage of blood cell generation. Moreover, the loss of the gene biased the development toward the lineage of CD43-CD146+CD90+CD73+ mesenchymal cells. RNA-seq analysis of RUNX1-null cells revealed the downregulation of top-level hematopoietic transcription factor genes and the reciprocal upregulation of genes associated with non-hematopoietic cells of mesodermal origin. Forced expression of RUNX1c in differentiating RUNX1-null hPSCs effectively rescued the development of CD45+ myeloid cells and megakaryocytes. Our data demonstrate that RUNX1 is a top hematopoietic inducer that simultaneously controls the expansion of non-hematopoietic lineages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/stmcls/sxaf019 | DOI Listing |
Reprod Biol
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across
Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.
View Article and Find Full Text PDFStem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
September 2025
Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:
To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.
View Article and Find Full Text PDFJACC Heart Fail
September 2025
Université de Lorraine, Inserm, Centre d'Investigations Cliniques Plurithématique 1433, Centre Hospitalier Régional Universitaire de Nancy, Nancy, France.
Pathol Res Pract
September 2025
Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China. Electronic address:
Background: Dermal clear cell sarcoma (DCCS) is a rare malignant mesenchymal neoplasm. Owing to the overlaps in its morphological and immunophenotypic profiles with a broad spectrum of tumors exhibiting melanocytic differentiation, it is frequently misdiagnosed as other tumor entities in clinical practice. By systematically analyzing the clinicopathological characteristics, immunophenotypic features, and molecular biological properties of DCCS, this study intends to further enhance pathologists' understanding of this disease and provide a valuable reference for its accurate diagnosis.
View Article and Find Full Text PDF