98%
921
2 minutes
20
This study introduces a method for constructing a dual cross-linked hydrogel network via combined chemical and physical processes. Carboxylated cellulose nanofibers (CNF-C) and tannic acid (TA) were integrated into a borax-polyvinyl alcohol (PVA) matrix, followed by the incorporation of metal cations (Al) to fabricate PVA/CNF-C composite hydrogels. The PVA-TA@CNF-C-Borax-Al hydrogel forms a multi-crosslinked 3D network through dynamic borate ester bonds between PVA and borax, coordination bonds between TA and Al, and hydrogen bonds from CNF, endowing the hydrogel with excellent mechanical properties. The PTCB(PVA-TA@CNF-Borax) hydrogel, with a TA to CNF-C mass ratio of 1:4, exhibits superior mechanical strength(1.6 MPa), robust conductivity(1.7 × 10 S/cm), and stable thermal properties(95 % at 60 °C). Furthermore, the influence of different valence ions on the hydrogel's properties was systematically investigated through the introduction of Na, Zn, and Al cations. It was found that Al can effectively enhance the tension and elasticity of the crosslinked network, improving the mechanical adaptability and sensitivity of the hydrogel. Additionally, this hydrogel system exhibits excellent strain-sensing capabilities. When employed as a self-powered triboelectric nanogenerator sensor, it can generate a stable open-circuit voltage of 2 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.142902 | DOI Listing |
Macromol Rapid Commun
September 2025
School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, China.
At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:
Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450000, China. Electronic address:
Fragrances are indispensable additives in consumer products including foods, cosmetics, and tobacco products. However, their inherent instability leads to rapid quality degradation and performance loss, driving the urgent need for controlled-release systems to stabilize fragrance performance. In this work, cellulose nanofibers (CNF) were used to prepare CNF aerogel-like gels (CA) and carbonized CNF aerogels (C-CA) through freeze-drying and high-temperature carbonization.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Chemical Science and Technologies, University of Tor Vergata, Via della Ricerca Scientifica, 000133 Rome, Italy. Electronic address:
Two forms of nanocellulose-based sensing materials were developed for heavy metal ions (HMIs) detection: all-solid-state and suspension. In these materials, cellulose nanofibers (CNF), isolated from cellulose bleached pulp via homogenization, were employed as a support matrix. For all-solid-state optodes development free-base 5,10,15,20-tetraphenylporphyrin (TPP) and zinc-porphyrin derivative (ZnPC) were deposited on CNF support.
View Article and Find Full Text PDF