Brain alterations and neurologic disorder progression induced by lymphatic dysfunction in the head and neck region.

Acta Neuropathol Commun

Rehabilitation Research Center, Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The potential negative impact of lymphatic dysfunction caused by head and neck cancer treatment remains underexplored. Emerging evidence suggests that waste clearance and fluidic balance in the brain are connected to the peripheral lymphatic system in the head and neck region, implying that lymphatic injury in this area could contribute to brain damage. This study aimed to investigate the pathological alterations in the brain induced by peripheral lymphatic dysfunction in the head and neck region using the lymphatic obstruction animal model. An animal model underwent cervical lymph node dissection combined with radiation therapy to simulate the condition with the peripheral lymphatic dysfunction in the head and neck region after cancer treatment. Lymphatic drainage impairment in the head and neck region was associated with significant swelling, disrupted lymphatic drainage, and immune cell infiltration in the white matter. The imaging techniques revealed ventricular enlargement and increased brain water content caused by fluid imbalance leading to significant structural alterations in the brain. Histopathological analysis demonstrated structural brain alterations similar to that of hydrocephalus and cerebral edema, while rotarod tests showed a substantial decline in motor performance. These findings highlight the impact of peripheral lymphatic dysfunction on brain integrity and function. This study provides evidence that brain damage in head and neck cancer patients may be influenced not only by chemotherapy or radiotherapy but also by lymphatic dysfunction caused by surgical interventions. Lymphatic injury in the head and neck region emerges as a potential risk factor for brain damage, underscoring the need for further research into preventive and therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978131PMC
http://dx.doi.org/10.1186/s40478-025-01953-wDOI Listing

Publication Analysis

Top Keywords

head neck
32
lymphatic dysfunction
24
neck region
24
peripheral lymphatic
16
lymphatic
12
dysfunction head
12
brain damage
12
brain
10
brain alterations
8
head
8

Similar Publications

Demystifying the link between periodontitis and oral cancer: a systematic review integrating clinical, pre-clinical, and in vitro data.

Cancer Metastasis Rev

September 2025

Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.

Chronic inflammation and microbial dysbiosis have been implicated in the development of head and neck squamous cell carcinoma (HNSCC), particularly oral cavity squamous cell carcinoma (OSCC). Periodontitis is a common chronic inflammatory disease characterized by the progressive destruction of tooth-supporting structures. While periodontitis Has been associated with an increased risk of OSCC in epidemiological and mechanistic studies, the strength of this association is unclear.

View Article and Find Full Text PDF

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF

Recessive variants in TWNK cause syndromic and non-syndromic post-synaptic auditory neuropathy through MtDNA replication defects.

Hum Genet

September 2025

College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.

Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.

View Article and Find Full Text PDF

Concerns over the mental health among young people have been increasing recently. We aimed to estimate the burdens of mental disorders, substance use disorders (SUDs), and self-harm at global, regional and national levels among adolescents and young adults aged 10-24 years from 1990 to 2021. Incidence, prevalence, and disability-adjusted life years (DALYs) of mental disorders, SUDs, and self-harm among young people were examined by age, sex, region, and country/territory.

View Article and Find Full Text PDF

Vocal tract contribution to vocal intensity: Interaction between vocal fold adduction, formant tuning, and fundamental frequency.

J Acoust Soc Am

September 2025

Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehab Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA.

The goal of this study was to understand the interaction between the voice source spectral shape, formant tuning, and fundamental frequency in determining the vocal tract contribution to vocal intensity. Computational voice simulations were performed with parametric variations in both vocal fold and vocal tract configurations. The vocal tract contribution to vocal intensity was quantified as the difference in the A-weighted sound pressure level between the radiated sound pressure and the sound pressure at the glottis.

View Article and Find Full Text PDF