98%
921
2 minutes
20
Developing photocatalysts that can efficiently utilize the full solar spectrum is a crucial step toward transforming sustainable energy solutions. Due to their light absorption limitations, most photo-responsive metal-organic frameworks (MOFs) are constrained to the ultraviolet (UV) and blue light regions. Expanding their absorption to encompass the entire solar spectrum would unlock their full potential, greatly enhancing efficiency and applicability. Here, we report the design and synthesis of a series of highly stable boron-dipyrromethene (bodipy)-based MOFs (BMOFs) by reacting dicarboxyl-functionalized bodipy ligands with Zr-oxo clusters. Leveraging the acidity of the methyl groups on the bodipy backbone, we expanded the conjugation system through a solid-state condensation reaction with various aldehydes, achieving full-color absorption, thereby extending the band edge into the near-infrared (NIR) and infrared (IR) regions. These BMOFs demonstrated exceptional reactivity and recyclability in heterogeneous photocatalytic activities, including C─H bond activation of saturated aza-heterocycles and C─N bond cleavage of N,N-dimethylanilines to produce amides under visible light. Our findings highlight the transformative potential of BMOFs in photocatalysis, marking a significant leap forward in the design of advanced photocatalytic materials with tunable properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144902 | PMC |
http://dx.doi.org/10.1002/anie.202505405 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemical Engineering, National Taiwan University, Taipei 106319, Taiwan.
To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China.
In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.
View Article and Find Full Text PDFSmall
September 2025
Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.
Recently, metal-organic frameworks (MOFs) have shown high potential in the field of sensing. However, fluorescent-based detection with MOFs in solution needs complex pre-treatments and has stability issues, complicating measurements and handling for sensing applications. Here, an easy-to-handle and low-cost strategy is introduced to convert MOF-based sensing from solution to surface using scanning probe lithography.
View Article and Find Full Text PDFSmall
September 2025
Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany.
Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.
View Article and Find Full Text PDFSmall
September 2025
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.
View Article and Find Full Text PDF