Study on the potential impact of sustained high temperatures during non-breeding season on largemouth bass.

Comp Biochem Physiol Part D Genomics Proteomics

School of Marine Biology and Fisheries, Sanya Nanfan Research Institute of Hainan University, Hainan Aquaculture Breeding Engineering Research Center, Hainan Academician Team Innovation Center, Hainan University, Haikou 570228, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the growing scale of largemouth bass breeding, the demand for seedlings is increasing. As global temperatures rise, it is crucial to study the effects of high temperature their regulatory mechanisms in largemouth bass. In this study, we simulated a high water temperature (28 °C) in the non-breeding season in aquaculture ponds for 28 days to examine the growth, reproduction, metabolism, apoptosis, and methylation markers in largemouth bass; transcriptome analysis was also performed. The results showed no significant difference in body weight between male and female largemouth bass. However, the high-temperature exposed females had reduced growth hormone (GH) and estradiol (E2) levels and elevated cortisol levels. They also showed upregulated expression of AR, cyp19a, igf, fshβ, and lhβ in ovarian tissue. Transcriptomic comparisons between temperature treatments revealed 963 differentially expressed genes in females and 700 in males. Both the ECM receptor interaction and PPAR signaling pathways were significantly enriched. High-temperature enhanced the lipid metabolism process through the PPAR signaling pathway. High temperatures increased oxidative stress in females, which corresponded with increases in SOD, CAT, and GSH-Px, likely to counteract the excess reactive oxygen species. Moreover, endoplasmic reticulum stress was activated, indicated by increases in IRE1 and ATF6, leading to the upregulation of apoptosis-related genes and ovarian cell apoptosis. At high temperature, 5-MC%, demethylase, and methyltransferase were not different in females, while 5-MC% and methyltransferase were higher and demethylase was lower in males. In summary, sustained high temperature affected ovarian development by altering the expression of hormone and gonad related genes and inducing endoplasmic reticulum stress leading to ovarian cell apoptosis. However, low demethylase activity and high genome-wide methylation in the test is suggested that high temperatures may affect testis development via methylation, potentially impacting offspring production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2025.101501DOI Listing

Publication Analysis

Top Keywords

largemouth bass
20
high temperatures
12
high temperature
12
high
8
sustained high
8
non-breeding season
8
ppar signaling
8
endoplasmic reticulum
8
reticulum stress
8
ovarian cell
8

Similar Publications

Citrobacter freundii, a common zoonotic pathogen affecting humans, livestock and fish, is recognized for its substantial impact on largemouth bass (Micropterus salmoides) mortality. However, the mechanisms of C. freundii infection in largemouth bass remain poorly understood.

View Article and Find Full Text PDF

Clostridium butyricum has gained attention as a probiotic in aquaculture due to its ability to improve growth, gut health, and immune function. However, most strains currently used are derived from non-aquatic sources, which may limit their colonization and efficacy in fish. In this study, a novel strain, C.

View Article and Find Full Text PDF

Newly discovered and conserved role of IgM against viral infection in an early vertebrate.

Elife

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

IgM emerged in jawed vertebrates 500 Mya and remains the most evolutionarily conserved antibody class. However, despite extensive studies on IgM as an ancient antiviral weapon in warm-blooded vertebrates, its role and mechanisms in combating viral infections in early vertebrates remain poorly understood. Here, significant virus-specific sIgM titers are generated in the serum and gut mucus of a teleost fish (largemouth bass) that survive infection, and fish lacking sIgM were more susceptible to viral infection.

View Article and Find Full Text PDF

Pathogenicity of Aeromonas hydrophila Isolated From Diseased Largemouth Bass (Micropterus salmoides) and Development of an Inactivated Vaccine.

J Fish Dis

September 2025

College of Fisheries, Research Center for Aquatic Biodiversity Conservation in the Upper Reaches of Yangtze River, Southwest University, Chongqing, China.

Aeromonas hydrophila can cause disease in various aquatic animals, but there exist no effective alternatives to control its outbreak. In this study, diseased largemouth bass were collected from the breeding farm Lake Dahong (Chongqing, China), a strain SK-2 was isolated and identified as A. hydrophila.

View Article and Find Full Text PDF

We performed a diagnostic disease investigation on a wild smallmouth bass () with skin ulcers that was collected from Lake Oahe, South Dakota, following reports from anglers of multiple fish with similar lesions. Gross and histologic lesions of ulcerative dermatitis, myositis, and lymphocytolysis within the spleen and kidneys were consistent with largemouth bass virus (LMBV) infection. LMBV was detected by conventional PCR in samples of a skin ulcer, and the complete genome sequence of the LMBV (99,184 bp) was determined from a virus isolate obtained from a homogenized skin sample.

View Article and Find Full Text PDF