98%
921
2 minutes
20
Water contamination emerging from urban and industrial waste disposal is posing an alarming threat to human and marine life. Hence, it is imperative to take a crucial approach to lowering the overall cost and time of wastewater treatment. The efficiency of heterogeneous photo Fenton green wastewater treatment processes relies mainly on the morphology and surface interface properties of photocatalysts for harnessing maximum sunlight energy. This research work reports for the first time the hydrothermal synthesis of ternary zinc ferrite coupled with carbon quantum dots derived primarily from corncob biomass and supported over graphene oxide. The physiochemical properties and microstructure of magnetic graphene oxide anchored over carbon quantum dots included Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope/Energy Dispersive X-ray, X-ray photoelectron spectroscopy, X-ray diffraction and Ultraviolet-Visible Spectroscopy. The effect of several factors on the photocatalytic degradation of Rhodamine B (RhB) dye was studied and maximum degradation was attained at optimized conditions of pH = 4, catalyst concentration (20 mg/100 mL), oxidant dose (10 mM) and degradation time (60 min). Response surface methodology was used to determine the optimization of various interacting parameters. The current research focused on the utilization of waste corncob biomass as a potential candidate for the novel ternary nanocomposite for effective treatment dye wastewater and reuse of treated dye water over wheat seeds germination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11967066 | PMC |
http://dx.doi.org/10.1186/s13065-025-01462-w | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2024
Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States.
Carbon-based quantum dots (CQDs) have been around for a few decades. Low cell toxicity, good water solubility, excellent and tunable fluorescence properties, and the ability to dope and modify the surface of these CQDs make them an incredible choice for the visualization and treatment of various cancers. This perspective analyzes some recent progress on size-color correlation, modification, and cancer treatment applications of CQDs.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
Background: Multi-ion radiotherapy using carbon, oxygen, and neon ions aims to improve local control by increasing dose-averaged linear energy transfer (LET) in the target. However, there has been limited understanding of how to utilize variables for multi-ion treatment planning such as the selection and arrangement of ion species.
Purpose: An in silico study was conducted to explore the feasibility of increasing a minimum LET, and the optimal selection and arrangement of ion species in multi-ion therapy for increasing LET in tumors of varying sizes mimicking bone and soft tissue sarcomas (BSTS).
Int J Biol Macromol
September 2025
Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:
This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.
View Article and Find Full Text PDF