Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study employs molecular dynamics simulations to investigate the bonding mechanism and high strain rate response of (1 1 1)-oriented nanotwinned silver (NT-Ag). By constructing one idealized model with atomic-level flatness and one more realistic model considered surface roughness, it uncovers the atomic-level bonding process, revealing that the realistic model proposed more closely replicates real experimental characteristics, thereby demonstrating strong validity. High strain rate tensile tests show NT-Ag possessing a great impact resistance, with toughening mechanisms such as strain-induced amorphization. The study recommends using moderate bonding temperatures (393-593 K) and optimal interference values (around 2-3 nm) to enhance material performance, confirming the potential of NT-Ag for applications in high-strength, extreme environments. These findings provide theoretical guidance for optimizing bonding conditions to improve NT-Ag's durability and toughness in demanding applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c00590DOI Listing

Publication Analysis

Top Keywords

high strain
12
strain rate
12
molecular dynamics
8
bonding mechanism
8
mechanism high
8
rate response
8
response 1-oriented
8
1-oriented nanotwinned
8
nanotwinned silver
8
realistic model
8

Similar Publications

Fatty acid synthase in high and low lipid-producing strains of Mucor circinelloides: identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation.

Biotechnol Lett

September 2025

Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.

Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.

View Article and Find Full Text PDF

The status of co-infection with porcine reproductive and respiratory syndrome virus type 1 (PRRSV-1) and type 2 (PRRSV-2) in Japan is poorly understood. A case of such co-infection was identified on a PRRSV-1 non-vaccinated farm in Kagoshima prefecture. Both PRRSV-1 and PRRSV-2 genomes were simultaneously detected in pig samples by RT-PCR, and molecular analysis confirmed PRRSV-1/PRRSV-2 co-infection in individual piglets.

View Article and Find Full Text PDF

Molecular characterization of Spodoptera frugiperda nose resistant to fluoxetine protein 6 and its putative involvement in tolerance to cyantraniliprole.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

Spodoptera frugiperda (FAW) is a notorious polyphagous pest that has developed resistance to various insecticides including diamide insecticides. Our previous study established a FAW cyantraniliprole-resistant (SfCYAN-R) strain by laboratory resistance selection of susceptible strain (SfCYAN-S), however, the potential resistance mechanisms of FAW to cyantraniliprole remain unclear. In this study, SfNrf6 encoding nose resistant to fluoxetine (Nrf) protein 6 was identified to be upregulated in SfCYAN-R strain compared with SfCYAN-S strain based on RNA-Seq data and RT-qPCR.

View Article and Find Full Text PDF

An Asp f2-like protein negatively affects stress tolerance, conidiation and virulence in Metarhizium acridum.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add

Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.

View Article and Find Full Text PDF

Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.

View Article and Find Full Text PDF