Fatty acid synthase in high and low lipid-producing strains of Mucor circinelloides: identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation.

Biotechnol Lett

Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.49 from M. circinelloides based on their genome database were identified and annotated respectively. Bioinformatic analysis confirmed the presence of typical conserved domains in FAS proteins. Phylogenetic analysis revealed the evolutionary relationship of these FAS proteins, and the FAS proteins from WJ11 have similar properties as their counterparts in CBS277.49. Furthermore, transcriptional profiling displayed marked differences in the expression of these fas genes, and fas1 was analyzed to predict the possible functions in lipid metabolism in the high lipid-producing strain WJ11. This is the first report on the structures and functions of FAS proteins in M. circinelloides. This research has suggested the association of fas genes with lipid metabolism at the transcriptional level and contributed to the selection of candidates related to lipid metabolism for further study.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-025-03643-yDOI Listing

Publication Analysis

Top Keywords

fas proteins
16
fas genes
12
lipid-producing strain
12
lipid metabolism
12
fas
9
fatty acid
8
acid synthase
8
low lipid-producing
8
mucor circinelloides
8
phylogenetic analysis
8

Similar Publications

Anti-obesity effects of water-dispersible turmeric extract via gut barrier and metabolite modulation in high-fat diet-fed mice.

Food Res Int

November 2025

Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.

View Article and Find Full Text PDF

Background: Disialoganglioside (GD2) is a tumor-associated antigen that is highly expressed in various neuroectodermal cancers, including melanoma. While chimeric antigen receptor (CAR) T-cell immunotherapy has demonstrated remarkable success in treating hematologic neoplasms, the identification of suitable targets remains a major obstacle in translating this approach to solid tumors.

Methods: Peripheral blood T lymphocytes from six healthy donors were used to generate GD2-specific CAR T cells via retroviral transduction.

View Article and Find Full Text PDF

Fatty acid synthase in high and low lipid-producing strains of Mucor circinelloides: identification, phylogenetic analysis, and expression profiling during growth and lipid accumulation.

Biotechnol Lett

September 2025

Shandong Provincial Engineering Research Center for Precision Nutrition and Healthy Elderly Care, Qilu Medical University, 1678 Renmin West Road, Zibo, 255300, People's Republic of China.

Fatty acid synthase (FAS) is one of the most important enzymes in lipid biosynthesis, which can catalyze the reaction of acetyl-CoA and malonyl-CoA to produce fatty acids. However, the structure, function, and molecular mechanism of FAS regulating lipid synthesis in the fungus Mucor circinelloides are unclear. In the present study, two encoding fas genes in the high lipid-producing strain WJ11 and low lipid-producing strain CBS277.

View Article and Find Full Text PDF

High fat diet (HFD)-induced obesity increases the risk and severity of psoriasis. However, the immunoregulatory effects of different HFDs on psoriasis pathogenesis remains poorly understood. Here, mimicking human dietary fat profiles, four HFDs-saturated, monounsaturated, omega-6, and omega-3 fats-were designed and used to induce obesity in mice.

View Article and Find Full Text PDF

Mitochondrial dysfunction and lipid metabolic disturbance may promote pathologic α-synuclein (α-syn) aggregation, accelerating the progression of Parkinson's disease (PD). Whether extracellular matrices are associated with those pathological mechanisms in PD remains elusive. Here, we aimed to identify if cellular fibronectin (cFn), a component of extracellular matrices, contributes to α-syn abnormality via inducing mitochondrial energy depletion or disrupting lipid homeostasis.

View Article and Find Full Text PDF