Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Improving nitrogen use efficiency (NUE) in rice is a requirement for future sustainable agricultural production. However, key factors and regulatory networks involved in NUE remain unclear. Here, QTL analysis, fine-mapping and functional validation demonstrated that qCR4 encodes a putative high-affinity nitrate transporter-activating protein 2.2 (OsNAR2.2). Located in the endoplasmic reticulum (ER), OsNAR2.2 was confirmed to regulate nitrate transport from root-to-shoot and control panicle number, grain yield and NUE in rice. RNA-seq and RT-qPCR revealed that OsNAR2.2 modulates nitrogen utilization by altering the expressions of some nitrogen metabolism-related genes and auxin signal-related genes. Furthermore, the 9311 allele of OsNAR2.2 significantly enhanced panicle number, grain yield and NUE, which provides a potential target for rice yield and NUE improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205869PMC
http://dx.doi.org/10.1111/pbi.70073DOI Listing

Publication Analysis

Top Keywords

yield nue
12
9311 allele
8
allele osnar22
8
nitrate transport
8
rice yield
8
nitrogen efficiency
8
nue rice
8
panicle number
8
number grain
8
grain yield
8

Similar Publications

One-time double-layer placement of controlled-release urea enhances wheat yield, nitrogen use efficiency and mitigates NO emissions.

Front Plant Sci

August 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs of China, Beijing, China.

Simultaneously enhancing the crop yield and reducing nitrous oxide (NO) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions.

View Article and Find Full Text PDF

Introduction: Straw return combined with rational nitrogen (N) fertilization plays a critical role in coordinating the transformation of soil organic carbon and nitrogen availability, thereby improving nitrogen use efficiency (NUE), crop yield, and soil fertility. However, the dynamics of soil carbon and nitrogen fractions under straw return with varying N inputs, and their specific contributions to NUE and yield, remain unclear.

Methods: A three-year split-plot field experiment was conducted in the Tumochuan Plain Irrigation District.

View Article and Find Full Text PDF

Enhancing nitrogen use efficiency (NUE) is critical in reducing the environmental footprint of agriculture. Wild relatives represent valuable underexploited genetic resources for improving NUE and ensuring sustainable tomato (Solanum lycopersicum L.) production in response to global demand.

View Article and Find Full Text PDF

Nitrogen use efficiency (NUE), a critical determinant of crop productivity and agricultural sustainability, varies significantly between indica and japonica subspecies. Here, we identify three coding-region SNPs in OsNLP4 underlying this divergence. These SNPs enhance the binding affinity of OsNLP4 to nitrate response elements (NREs), amplifying transcriptional activation of nitrogen metabolism and iron homeostasis genes.

View Article and Find Full Text PDF

Background: Nitrogen-Use-Efficiency (NUE) in lactating dairy cows, defined as milk nitrogen (N) output as a proportion of N consumed, is low, with the majority of excess N excreted in manure. Excreted N can be lost to the environment as ammonia gas leading to environmental acidification and nutrient enrichment of sensitive habitats, and to watercourses contributing to aquatic eutrophication. While there is much evidence that NUE can be improved by reducing the crude protein (CP) content of dairy cow diets, the long-term impacts of feeding lower protein diets on cow performance and the rumen microbiome are less well understood.

View Article and Find Full Text PDF