98%
921
2 minutes
20
Mesophyll conductance (gm) has been proved to be one of the important factors limiting photosynthesis and thus affects the estimation of plant productivity and terrestrial carbon balance. However, beyond the leaf scale, gm is usually assumed to be infinite because of the unavailability of the estimating technology. In this study, we first verified the important role of gm on photosynthesis by utilizing a wide range of ginkgo (Ginkgo biloba L.) families. Then, the dataset was adopted to establish a random forest-based gm estimation approach with the drivers being selected under the guidance of several mechanistic models (e.g. Farquhar, von Caemmerer, Berry model, the mechanistic light reaction model of photosynthesis). This model exhibited high predictive accuracy, utilizing both the measured fraction of open reaction centers in PSII (qL) (R2 = 0.71, RMSE = 0.008) and the estimated qL (R2 = 0.70, RMSE = 0.008) as inputs. Since qL, a key physiological driver in the model, can be obtained from chlorophyll fluorescence of PSII (SIFPSII) using the open-closed (OC) redox model of photosynthetic electron transport, this leaf-scale model could potentially be applied beyond the leaf scale, provided that environmental data are available. Direct measurements also confirmed the close relationship between qL and gm under ambient CO2 concentration and saturated light conditions. Our findings pave the way for additional attempts to estimate gm across a variety of scales.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpaf021 | DOI Listing |
Plant Physiol
September 2025
School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom.
Stomatal pores govern the tradeoff between CO₂ assimilation and water loss, and optimizing their performance is critical for crop resilience, particularly under dynamic field environments. Here, we show that overexpression of Triticum aestivum EPIDERMAL PATTERNING FACTOR1 (TaEPF1) in bread wheat (Triticum aestivum) reduces leaf stomatal density in a leaf surface-specific manner, with a greater decline on the abaxial surface than on the adaxial surface. TaEPF1 overexpressors exhibited substantially lower stomatal conductance than wild-type (WT) control plants, which resulted in diffusional constraints limiting photosynthesis when measured under monochromatic red light.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Xinyu 338000, China.
, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought-rehydration cycles in two cultivars with contrasting drought resistance: 'CL53' (tolerant) and 'CL40' (sensitive). Photosynthetic inhibition resulted from both stomatal and non-stomatal limitations, with cultivar-specific differences.
View Article and Find Full Text PDFPlants (Basel)
August 2025
College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China.
Mast., a critically endangered spruce species endemic to China, is classified as a national second-level key protected wild plant and listed as critically endangered (CR) on the International Union for Conservation of Nature (IUCN) Red List. Its habitat features complex forest light environments, and global climate change coupled with environmental pollution has increased regional nitrogen deposition, posing significant challenges to its survival.
View Article and Find Full Text PDFNat Plants
August 2025
Department of Biology, Penn State University, University Park, PA, USA.
Guard cell pairs in the leaf epidermis enclose stomata, microscopic pores mediating CO uptake and water loss. Historical data suggest that signals from interior mesophyll tissue may modulate guard-cell regulation of stomatal apertures, but the molecular identity of any metabolite-based signals has remained elusive. We discovered that extracellular (apoplastic) fluid from Arabidopsis thaliana and Vicia faba enhances red-light-induced stomatal opening.
View Article and Find Full Text PDFPlant J
August 2025
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University,
Piercing-sucking insects, such as whiteflies and aphids, cause massive economic losses in major crops around the world. During feeding, the stylets of piercing-sucking insects navigate cuticles, cell walls, epidermal cells, and mesophyll cells; thus, these barriers are vital for the resistance of plants to insects. However, the relationship between insect stylet probing behavior and the composition and structure of these barriers remains unclear.
View Article and Find Full Text PDF