98%
921
2 minutes
20
Antibiotic therapy is a key strategy for treating infections associated with orthopedic implants, yet its limited effectiveness and potential to disrupt bone healing highlight the need for innovative approaches. Herein, a TiO-Graphene (TiO-G) metastructure is developed on Ti implant surface using a hydrothermal method coupled with plasma-enhanced chemical vapor deposition (PECVD), showing strong near-infrared light (NIR) absorption. The antibiotic doxycycline (DOX) is successfully loaded onto TiO-G and exhibited enhanced NIR release. The promising antibacterial efficacy is proven by both in vitro and in vivo tests with NIR irradiation for 5 min, which is ascribed to the synergistic photocatalytic activity of TiO-G and NIR-responsive release of DOX. Interestingly, after 5 min of NIR irradiation, the TiO-G metasurface neutralized the immediate negative effects of photodynamics and even upregulated the expression of osteogenic genes (osteocalcin (OPN), osteopontin (BSP), and bone sialoprotein (OCN)), with particularly enhanced effects observed on day 14. Moreover, the sustained release function of TiO-G significantly mitigated the cytotoxicity of free antibiotics with antibacterial capabilities comparable to those of TiO-G/DOX under NIR irradiation for 5 min. Consequently, the in vivo studies proved that the TiO-G metastructure enhanced the osteointegration of the implant even in the absence of infection when loaded with DOX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202500743 | DOI Listing |
Int J Pharm X
June 2025
Medical School, Southeast University, Nanjing 210009, China.
This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.
View Article and Find Full Text PDFACS Nano
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania.
Magnetic nanoparticles are widely explored in biomedical applications, particularly as MRI contrast agents and for magnetic hyperthermia. However, their photothermal capabilities under near-infrared (NIR) irradiation remain underexplored in realistic, tissue-like environments. This study provides a comprehensive assessment of ultrasmall FeO nanoparticles (9.
View Article and Find Full Text PDFAdv Mater
September 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.
Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
In this study, we successfully developed a diselenide-based, triple-responsive intelligent nanogel, IR780@BEAP, for lung cancer therapy. Exploiting the elevated levels of reactive oxygen species (ROS) and glutathione (GSH) in the tumor microenvironment (TME), a ROS/GSH dual-responsive diselenide cross-linker (DSe5) was synthesized and used to cross-link betulin (BE) with polysaccharide (AP) while coloading the photosensitizer IR780. The resulting nanogel, IR780@BEAP, exhibited an appropriate particle size (137.
View Article and Find Full Text PDF