Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Load-bearing structural degradation is crucial in knee osteoarthritis (KOA) progression, yet limited prediction models use load-bearing tissue radiomics for radiographic (structural) KOA incident.
Purpose: We aim to develop and test a Load-Bearing Tissue plus Clinical variable Radiomic Model (LBTC-RM) to predict radiographic KOA incidents.
Study Design: Risk prediction study.
Methods: The 700 knees without radiographic KOA at baseline were included from Osteoarthritis Initiative cohort. We selected 2164 knee MRIs during 4-year follow-up. LBTC-RM, which integrated MRI features of meniscus, femur, tibia, femorotibial cartilage, and clinical variables, was developed in total development cohort (n = 1082, 542 cases vs. 540 controls) using neural network algorithm. Final predictive model was tested in total test cohort (n = 1082, 534 cases vs. 548 controls), which integrated data from five visits: baseline (n = 353, 191 cases vs. 162 controls), 3 years prior KOA (n = 46, 19 cases vs. 27 controls), 2 years prior KOA (n = 143, 77 cases vs. 66 controls), 1 year prior KOA (n = 220, 105 cases vs. 115 controls), and at KOA incident (n = 320, 156 cases vs. 164 controls).
Results: In total test cohort, LBTC-RM predicted KOA incident with AUC (95 % CI) of 0.85 (0.82-0.87); with LBTC-RM aid, performance of resident physicians for KOA prediction were improved, with specificity, sensitivity, and accuracy increasing from 50 %, 60 %, and 55 %-72 %, 73 %, and 72 %, respectively. The LBTC-RM output indicated an increased KOA risk (OR: 20.6, 95 % CI: 13.8-30.6, p < .001). Radiomic scores of load-bearing tissue raised KOA risk (ORs: 1.02-1.9) from 4-year prior KOA whereas 3-dimensional feature score of medial meniscus decreased the OR (0.99) of KOA incident at KOA confirmed. The 2-dimensional feature score of medial meniscus increased the ORs (1.1-1.2) of KOA symptom score from 2-year prior KOA.
Conclusions: We provided radiomic features of load-bearing tissue to improved KOA risk level assessment and incident prediction. The model has potential clinical applicability in predicting KOA incidents early, enabling physicians to identify high-risk patients before significant radiographic evidence appears. This can facilitate timely interventions and personalized management strategies, improving patient outcomes.
The Translational Potential Of This Article: This study presents a novel approach integrating longitudinal MRI-based radiomics and clinical variables to predict knee osteoarthritis (KOA) incidence using machine learning. By leveraging deep learning for auto-segmentation and machine learning for predictive modeling, this research provides a more interpretable and clinically applicable method for early KOA detection. The introduction of a Radiomics Score System enhances the potential for radiomics as a virtual image-based biopsy tool, facilitating non-invasive, personalized risk assessment for KOA patients. The findings support the translation of advanced imaging and AI-driven predictive models into clinical practice, aiding early diagnosis, personalized treatment planning, and risk stratification for KOA progression. This model has the potential to be integrated into routine musculoskeletal imaging workflows, optimizing early intervention strategies and resource allocation for high-risk populations. Future validation across diverse cohorts will further enhance its clinical utility and generalizability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937290 | PMC |
http://dx.doi.org/10.1016/j.jot.2025.01.007 | DOI Listing |