Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid development of lightweight network models and efficient hardware deployment techniques, the demand for real-time semantic segmentation in areas such as autonomous driving and medical image processing has increased significantly. However, realizing efficient semantic segmentation on resource-constrained embedded platforms still faces many challenges. As a classical lightweight semantic segmentation network, ENet has attracted much attention due to its low computational complexity. In this study, we optimize the ENet semantic segmentation network to significantly reduce its computational complexity through structural simplification and 8-bit quantization and improve its hardware compatibility through the optimization of on-chip data storage and data transfer while maintaining 51.18% mIoU. The optimized network is successfully deployed on hardware accelerator and SoC systems based on Xilinx ZYNQ ZCU104 FPGA. In addition, we optimize the computational units of transposed convolution and dilated convolution and improve the on-chip data storage and data transfer design. The optimized system achieves a frame rate of 130.75 FPS, which meets the real-time processing requirements in areas such as autonomous driving and medical imaging. Meanwhile, the power consumption of the accelerator is 3.479 W, the throughput reaches 460.8 GOPS, and the energy efficiency reaches 132.2 GOPS/W. These results fully demonstrate the effectiveness of the optimization and deployment strategies in achieving a balance between computational efficiency and accuracy, which makes the system well suited for resource-constrained embedded platform applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943949PMC
http://dx.doi.org/10.3390/mi16030258DOI Listing

Publication Analysis

Top Keywords

semantic segmentation
20
embedded platforms
8
areas autonomous
8
autonomous driving
8
driving medical
8
resource-constrained embedded
8
segmentation network
8
computational complexity
8
on-chip data
8
data storage
8

Similar Publications

In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.

View Article and Find Full Text PDF

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.

View Article and Find Full Text PDF

Introduction: Accurate identification of cherry maturity and precise detection of harvestable cherry contours are essential for the development of cherry-picking robots. However, occlusion, lighting variation, and blurriness in natural orchard environments present significant challenges for real-time semantic segmentation.

Methods: To address these issues, we propose a machine vision approach based on the PIDNet real-time semantic segmentation framework.

View Article and Find Full Text PDF

GESur_Net: attention-guided network for surgical instrument segmentation in gastrointestinal endoscopy.

Med Biol Eng Comput

September 2025

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300072, China.

Surgical instrument segmentation plays an important role in robotic autonomous surgical navigation systems as it can accurately locate surgical instruments and estimate their posture, which helps surgeons understand the position and orientation of the instruments. However, there are still some problems affecting segmentation accuracy, like insufficient attention to the edges and center of surgical instruments, insufficient usage of low-level feature details, etc. To address these issues, a lightweight network for surgical instrument segmentation in gastrointestinal (GI) endoscopy (GESur_Net) is proposed.

View Article and Find Full Text PDF

Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process.

View Article and Find Full Text PDF