98%
921
2 minutes
20
Collagen and gelatin methacryloyl (GelMA) are widely studied biomaterials for extrusion-based bioprinting (EBB) due to their excellent biological properties and ability to mimic the extracellular matrix of native tissues. This study aims to establish a preliminary workflow for approaching EBB by assessing collagen and GelMA printability and biological performance. GelMA was selected for its cost-effectiveness and ease of synthesis, while our collagen formulation was specifically optimized for printability, which is a challenging aspect of bioprinting. A parallel evaluation of their printability and biological performance is provided to develop a preliminary 3D intestinal model replicating the submucosa, lamina propria, and epithelial layer. Rheological analyses demonstrated that both materials exhibit a shear-thinning behavior. Collagen (u-CI) displayed a shear-thinning parameter = 0.1 and a consistency index = 80.62 Pa·s, while GelMA (u-GI) exhibited a more pronounced shear-thinning effect and enhanced shape retention ( = 0.06, = 286.6 Pa·s). Post-extrusion recovery was higher for collagen (85%), compared to GelMA (45%), indicating its greater mechanical resilience. Photo-crosslinking improved hydrogel stability, with an increase in storage modulus ' for both materials. Printing tests confirmed the suitability of both hydrogels for bioprinting, with GelMA demonstrating higher print fidelity than collagen. Dimensional stability assessments under incubating conditions revealed that collagen constructs maintained their shape for 14 days before degradation, whereas GelMA constructs exhibited a gradual decrease in diameter over 21 days. Cell culture studies showed that human skin fibroblasts (HSFs) and human colon adenocarcinoma cells (HCT-8) could be successfully cocultured in an optimized RPMI 1640-based medium. AlamarBlue assays and Live/Dead staining confirmed high cell viability and proliferation within both hydrogel matrices. Notably, HSFs in GelMA exhibited more elongated morphologies, likely due to the material's lower stiffness (380 Pa) compared to collagen (585 Pa). HCT-8 cells adhered more rapidly to GelMA constructs, forming colonies within 7 days, whereas on collagen, colony formation was delayed to 14 days. Finally, a layered intestinal model was fabricated, and immunostaining confirmed the expression of tight junction (ZO-1) and adhesion (E-cadherin) proteins, validating the epithelial monolayer integrity. These findings highlight the potential of collagen and GelMA in 3D bioprinting applications for gut tissue engineering and pave the way for future developments of intestinal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001187 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.5c00034 | DOI Listing |
Chem Biodivers
September 2025
Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.
View Article and Find Full Text PDFCancer Res
September 2025
The Catholic University of Korea College of Medicine, Seoul, Korea (South), Republic of.
Alterations in the structure of the Golgi apparatus play a pivotal role in cancer progression and invasion. A better understanding of how Golgi morphology regulates the metastatic potential of cancer cells could help identify potential treatment strategies. In this study, we investigated how specific structural variations in the Golgi, particularly fragmentation and condensation, influence the malignancy of gastric cancer using human cell lines, xenograft mouse models, and human patient tissue samples.
View Article and Find Full Text PDFAnal Chem
September 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
High-fat foods are decomposed into fatty acids during digestion and absorption, primarily occurring in the gastrointestinal tract, and numerous studies have indicated that long-term high-fat diets significantly increase the incidence of intestinal disorders. As a critical intestinal hormone, serotonin (5-hydroxytryptamine, 5-HT) is involved in regulating intestinal peristalsis, secretion, and visceral sensitivity. However, due to the lack of methods capable of reproducing intestinal mechanical activities and in situ monitoring of 5-HT levels, the influence of high-fat diets on intestinal 5-HT release remains unclear.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Unlabelled: Severe acute pancreatitis (SAP) is characterized by systemic inflammation and intestinal barrier dysfunction and is often associated with gut microbiota dysbiosis. Rifaximin, a gut-specific non-absorbable antibiotic, is known to modulate the gut microbiota. Here, we investigated rifaximin's effects and mechanisms in SAP using murine models and a single-center, open-label, randomized controlled trial (Chinese Clinical Trial Registry: ChiCTR2100049794).
View Article and Find Full Text PDF