98%
921
2 minutes
20
N6-methyladenosine (mA) modification is critical in the regulation of osteoporosis (OP). Although ZC3H13 is an important mA methyltransferase, its specific regulatory effects and mechanisms in osteoporosis are not yet fully understood. Therefore, we investigated the impact of ZC3H13 on the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMSCs) in osteoporosis and attempted to elucidate its underlying mechanism. Western blotting, quantitative reverse transcription polymerase chain reaction, and immunohistochemical staining were used to identify changes in ZC3H13 and osteogenic factor (RUNX2 and OPN) expression in osteoporosis. Gain- and loss-of-function experiments were conducted to study the impact of ZC3H13 on the osteogenic differentiation of osteoporotic BMSCs (OP-BMSCs). Transcriptomic sequencing, transmission electron microscopy, and intraperitoneal injection of the ferroptosis inhibitor ferrostatin-1 (Fer-1) were used to elucidate the downstream mechanisms regulated by ZC3H13 in osteoporosis. In addition, rescue assays were performed to elucidate the underlying molecular mechanisms involved. Here, we revealed that ZC3H13 was downregulated in OP-BMSCs and osteoporotic rat femurs, which correlated with the reduced osteogenic differentiation of OP-BMSCs. Functionally, ZC3H13 knockdown resulted in decreased osteogenic differentiation of the BMSCs, whereas ZC3H13 overexpression promoted the osteogenic differentiation of the OP-BMSCs. Furthermore, ZC3H13 knockdown was closely related to metal ion binding, reduced cell proliferation, and altered mitochondrial morphology. Treatment with the ferroptosis inhibitor Fer-1 partially reversed osteoporotic phenotypes . Mechanistically, ZC3H13 was shown to promote osteogenic differentiation in OP-BMSCs by inhibiting ferroptosis. Our study revealed that ZC3H13 promoted the osteogenic differentiation of BMSCs by inhibiting ferroptosis in osteoporosis. This research offers a reliable theoretical foundation for predicting and treating osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.tea.2024.0243 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFStem Cells Int
August 2025
Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.
View Article and Find Full Text PDFJOR Spine
September 2025
Spine Center, Department of Orthopaedics Changzheng Hospital, Naval Medical University (Second Military Medical University) Shanghai People's Republic of China.
Background: Ossification of the posterior longitudinal ligament (OPLL) is a pathological condition characterized by ectopic ossification of spinal ligaments, primarily driven by abnormal osteogenic differentiation of ligament fibroblasts with stem cell-like properties. The SOX transcription factor family is crucial in regulating cell stemness and differentiation. Among them, SOX8 is known to influence osteoblast differentiation, but its role in OPLL remains unclear.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.
Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.
Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.
Mater Today Bio
October 2025
Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
Peri-implantitis (PI) is a major cause of implant restoration failure, necessitating therapeutic strategies that integrate bone regeneration and anti-inflammatory effects. Despite advances in treatment, no existing agents simultaneously address both objectives. Exosomes (Exos), as key mediators of intercellular communication, have demonstrated dual anti-inflammatory and osteogenic capacities through microRNA (miRNA) delivery; however, their potential in PI therapy remains unexplored.
View Article and Find Full Text PDF