98%
921
2 minutes
20
Introduction: Combining radiotherapy (RT) with immunotherapy for head and neck squamous cell carcinoma (HNSCC) has limited effectiveness due to the DNA damage repair (DDR) pathway activated by ionizing radiation. DNA-PK, encoded by the gene, plays a key role in this repair. The potential improvement of radioimmunotherapy by inhibiting the DDR pathway is still unclear.
Methods: The effectiveness of different treatments on tumor growth and survival was tested using the C3H/HeN mouse tumor model. Flow cytometry analyzed treatment-induced immunophenotypic changes. In vitro, Western blot and PCR confirmed the impact of combining immunotherapy with RT on the cGAS-STING pathway after DNA-PKcs dysfunction.
Results: The combination of a DNA-PK inhibitor (NU7441), radiation therapy, and a PD-1 checkpoint inhibitor showed improved antitumor effects and extended survival in mice. Adding NU7441 into the RT and immunotherapy regimen increased CD8+ T cell infiltration. alterations or DNA-PKcs dysfunction increased IR-induced DNA breaks, activating the cGAS-STING pathway and boosting the anti-tumor immune response.
Conclusion: These findings suggest that targeting the DDR pathway may represent a promising therapeutic strategy and biomarker to improve the efficacy of radioimmunotherapy in HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930847 | PMC |
http://dx.doi.org/10.2147/JIR.S497295 | DOI Listing |
Bioact Mater
December 2025
Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, PR China.
Mitochondrial DNA (mtDNA) functions as an endogenous danger-associated molecular pattern that broadly activates the cGAS-STING pathway to potentiate antitumor immunotherapy. However, inefficient mtDNA release severely limits its ability to robustly activate downstream immune responses. Recent studies reveal that ferroptosis can trigger mtDNA release from damaged mitochondria into the cytosol, thereby stimulating antitumor immunity.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
Introduction: Alzheimer's Disease (AD) is a common neurodegenerative disease among the elderly population. It has been posited that the onset and progression of AD are influenced by a combination of various factors. Occlusal support loss due to tooth loss has been reported to be a risk factor triggering cognitive dysfunction.
View Article and Find Full Text PDFFront Immunol
September 2025
Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China.
Background: Cisplatin (DDP) is a clinical first-line chemotherapy drug for hepatocellular carcinoma (HCC), but treatment is often ineffective due to drug resistance. Yes-associated protein 1 (YAP1) is a critical regulator/factor in HCC tumor progression. Our previous research showed that DDP promoted the expression of YAP1 in mice bearing H22 cell in situ liver tumors, which might be related to the poor therapeutic effect of DDP.
View Article and Find Full Text PDFBioorg Chem
September 2025
School of Pharmacy, Shandong Second Medical University, Weifang 261053, China. Electronic address:
PARP inhibitors play a crucial role in cancer therapy, with PARP7 emerging as a promising target for immunotherapy by modulating the cGAS-STING pathway. In this study, the piperazine ring of Olaparib was replaced with a bicyclo[1.1.
View Article and Find Full Text PDFNeuropharmacology
September 2025
College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China. Electronic address:
Aim Of The Study: This study aimed to investigate the protective effects of Geniposide (GEN) against cerebral ischemia-reperfusion injury by targeting the cGAS-STING pathway and modulating autophagy in neuronal cells.
Materials And Methods: In vivo middle cerebral artery occlusion/reperfusion (MCAO/R) model and an in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model to mimic the pathology of cerebral ischemic stroke in humans. Behavioral tests, tissue staining to assess neurological deficits and tissue damage in mice.