98%
921
2 minutes
20
Introduction: Microalgae are considered promising bioenergy producers, but their commercial potential is limited by low lipid yields. Nutrient deprivation, particularly nitrogen starvation, is a primary strategy to enhance lipid synthesis efficiency in microalgae. However, controlling this process flexibly, effectively, and accurately remains challenging. Moreover, nutrient deficiency triggers expression changes of numerous genes, complicating the identification of key lipid biosynthesis regulators.
Objectives: For the first time, we investigated mannose as a novel non-nutrient-deficient regulator of lipid accumulation in microalgae and explored its potential underlying mechanisms.
Methods: We examined how mannose induction affectslipid accumulation in Chlorella sorokiniana W1 under various culture conditions and compared its effects with nitrogen-starvation. Transcriptome analysis and genome-scale metabolic modeling were used to elucidate the regulatory mechanisms underlying mannose-induced lipid synthesis. Additionally, potential transcription factors were identified using weighted gene co-expression network analysis.
Results: Mannose drives rapid and sustained lipid accumulation in C. sorokiniana under various cultivation conditions, independent of nutrient deficiencies. Under autotrophic conditions, mannose increased lipid content of microalgae by 80.1 %. Notably, mannose was not consumed during cultivation, supporting its role as an inducer. Transcriptomic analysis revealed that mannose increased carbon flux by upregulating genes associated with the Calvin cycle, glycolysis, the TCA cycle, and starch degradation. It also redirected carbon towards lipid accumulation by upregulating lipid synthesis pathways and downregulating lipid degradation pathways. Additionally, two SBP1 transcription factors specifically responsive to mannose were identified and may regulate carbon metabolism in microalgae.
Conclusion: Our study introduces mannose as a novel non-nutrient-deficiency regulatory factor for lipid accumulation in C. sorokiniana W1, and explores its metabolic and regulatory mechanisms under various nutrient conditions. The research demonstrates that mannose induction has significant potential for improving microalgal lipid production in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2025.03.019 | DOI Listing |
Psychopharmacology (Berl)
September 2025
Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
Hyperlipidemia is a common chronic disease characterized by elevated levels of lipids in the blood. There is some evidence that suggests that berberine (BBR) might be beneficial for the treatment of hyperlipidemia. However, its low intestinal bioavailability limits its potential therapeutic action.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea.
Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.
Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.
Mol Ther Methods Clin Dev
June 2025
Shanghai Vitalgen BioPharma Co., Ltd., Shanghai 201210, China.
Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, Hunan 410060, P.R. China.
S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.
View Article and Find Full Text PDF