Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peritubular capillary (PTC) rarefaction is a common pathological feature of chronic kidney disease (CKD). The critical function of PTCs in maintaining blood supply for tubular epithelial cells renders PTCs a promising therapeutic target. However, the role of PTC rarefaction in the progression of kidney fibrosis remains elusive. In this study, we first characterized mice with altered PTC density. CD31 staining, together with microvascular network perfusion with FITC-labelled albumin and laser speckle contrast imaging, revealed a significant increase in PTC density in Flt1 heterozygous-deficient mice, whereas homozygous disruption of the plasminogen activator, urokinase receptor gene (Plaur/uPAR), led to a notable decrease in PTC density. Using these genetically distinct mice, we showed that preexisting higher PTC density protected against tubular injury and attenuated the progression of tubulointerstitial fibrosis in two distinct kidney injury models, namely, ischemia-reperfusion injury (IRI) and unilateral ureteral obstruction (UUO). By contrast, Plaur-deficient mice with established lower PTC density displayed exacerbated tubular injury and renal fibrosis when subjected to IRI or UUO. The pathophysiological significance of PTC density was associated with protective effects on tubular cell apoptosis and concomitant regeneration. Finally, vasodilation of the renal capillary with minoxidil, a clinically available drug, effectively prevented UUO-induced tubular injury and renal fibrosis. Moreover, minoxidil treatment abolished the detrimental effect of Plaur deficiency on the UUO-treated kidney, thus suggesting a causative role of PTC density in the susceptibility of Plaur knockout mice to tubular injury following fibrosis. Our results provide an overview of the pathologic significance of PTC density alterations in the progression of CKD, and show that improving peritubular microcirculation is effective in preventing tubular injury and the subsequent renal fibrosis. © 2025 The Pathological Society of Great Britain and Ireland.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.6414DOI Listing

Publication Analysis

Top Keywords

ptc density
32
tubular injury
24
renal fibrosis
12
ptc
10
density
9
peritubular capillary
8
tubular
8
injury
8
kidney fibrosis
8
ptc rarefaction
8

Similar Publications

Tellurium-Nitrogen-Carbon Support Boosting Platinum Catalysis in High-Efficiency Proton Exchange Membrane Fuel Cells.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

Enhancing the energy conversion efficiency of fuel cells necessitates optimization of oxygen reduction reaction (ORR) under high-voltage conditions through improved Pt catalysis. This study introduces an electrocatalyst that uniformly anchors a high loading (40 wt%) of small Pt nanoparticles (3.2 nm) on a novel support: tellurium and nitrogen co-mediated graphitized mesoporous carbon (Te-N-GMC).

View Article and Find Full Text PDF

Surface reconstruction of electroless-deposited Ni-Co-P for large-current-density urea-assisted water splitting.

J Colloid Interface Sci

September 2025

Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.

Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.

View Article and Find Full Text PDF

Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded.

View Article and Find Full Text PDF

Sub-2 nm platinum nanocluster decorated on yttrium hydroxide as highly active and robust self-supported electrocatalyst for industrial-current alkaline hydrogen evolution.

J Colloid Interface Sci

September 2025

State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Downsizing Pt particles and incorporating water dissociation site represents a promising strategy for maximizing atomic utilization efficiency and enhancing catalytic performance in Pt-based hydrogen evolution reaction (HER) electrocatalysts. Here, we present a self-supported Pt/Y(OH) electrocatalyst through a synergistic combination of anion insertion-enhanced electrodeposition and chemical deposition at ambient temperature. The resultant architecture features sub-2 nm Pt nanoclusters (with an average diameter of 1.

View Article and Find Full Text PDF

Iron Coordination in PtFeCoNiMo High-Entropy Alloys Modulates Platinum Local Environments for pH-Universal Hydrogen Evolution Reaction.

Small

September 2025

Power Battery and System Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Developing cost-effective, stable hydrogen evolution reaction (HER) electrocatalysts effective across pH-Universal remains challenging. This work reports a one-pot synthesized Pt-Fe-Ni-Mo-Co high-entropy alloy catalyst supported on Ketjen Black (HEA@KB) featuring stacked nanoparticles. By systematically tuning the iron coordination, the optimized HEA@KB demonstrates outstanding HER activity with low overpotentials of 12.

View Article and Find Full Text PDF