98%
921
2 minutes
20
Osteoarthritis (OA) is characterized by the degeneration of articular cartilage caused by several factors of which novel most trends include microbiota. Specific microbiota and the role in the development of OA is less clear. The microbiota is presumed to influence OA occurrence and progression mainly via immune modulation. In recent years, bone marrow mesenchymal stem cells (MSCs) have shown great potential for the treatment of OA, however, the therapeutic efficiency has been seriously affected by the harsh microenvironment in the joint cavity. At present, many strategies have been used to enhance the function of MSCs, among them, engineering are a promising method. Therefore, this review mainly focuses on the latest research on how the microbiota affects the development of OA, stem cell repair, and the use of engineered MSCs in the treatment of OA. In addition, engineered MSCs can enhance the therapeutic potential of exosomes as a novel strategy for treating OA. Our review provides a comprehensive perspective on the role of microbiota in OA and the influence of MSCs therapy and engineered MSCs on the treatment of OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913030 | PMC |
http://dx.doi.org/10.2147/IJN.S511884 | DOI Listing |
Regen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Reprod Domest Anim
September 2025
National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.
Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.
View Article and Find Full Text PDFInt J Pharm X
December 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Bispecific T-cell engagers (BiTEs) are small-molecule antibodies that exhibits potent tumoricidal activity but suffer from a short plasma half-life. Mesenchymal stromal cells (MSCs) represent promising delivery vehicles for sustained therapeutic protein expression. In this study, we used human umbilical cord blood-MSCs (hUC-MSCs) as a delivery system to to secrete HER2/CD3 BiTE antibodies, thereby addressing the pharmacokinetic limitations of conventional BiTE therapies.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department Bio-Adaptive production, Fraunhofer Institute for Production Technology (FHG), Aachen, Germany.
Mesenchymal stem/stromal cells (MSCs) have been identified as a promising therapeutic option for osteoarthritis, graft vs. host disease and cardiovascular diseases, among others. For widespread application of these therapies, robust and scaled manufacturing processes are required that reliably yield high amounts of high quality MSCs.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States.
Background: Mesenchymal stem cells (MSCs) hold great promise for treating a variety of human diseases; however, their clinical translation is hindered by challenges in large-scale expansion while preserving therapeutic potency and maintaining small cell size. Conventional 2D culture on rigid substrates induces MSC senescence and enlargement, compromising their function and biodistribution.
Methods: We present an alternating 2D/3D culture strategy that combines adherent monolayer expansion with transient spheroid formation to mitigate these limitations.