98%
921
2 minutes
20
The reactive oxygen species (ROS) amplification caused by inevitable plasma albumin encapsulation is still a challenge to circumvent the systemic adverse effects in the photodynamic therapy (PDT) process. Herein, a disulfide bond linked homodimer, Cy1280, which is modulated by albumin to accurately balance the fluorescence and ROS generation and exhibit a weak fluorescence and sealed PDT effect during blood circulation, is exploited. Cy1280 can be specifically internalized and dispersed at the tumor site via Organic Anion Transporter Proteins (OATPs) and thiol-disulfide exchange mediated synergistic uptake and activated after mild sunlight irradiation (100 ± 5 Klx) to sensitize neighboring oxygen in cellular mitochondria to execute direct protein dysfunction effect. The dynamic covalent chemistry (DCC) facilitates prolonged and sustained retention in tumors (>336 h) and demonstrates the efficacy of imaging-guided solid-tumor therapy in tumor-bearing BALB/C mice. This study resolves the inevitable stubborn impotent tumor penetration caused by bulky-sized nanoparticles and high interstitial pressure of tumor with synergistic uptake manner, the long-term circulation and sealed PDT manipulated with albumin also improve the whole body phototoxic symptom. The advantageous feature of Cy1280 provides a promising candidate for overcoming the off-target phototoxicity and inadequate accumulation challenges in clinical translation with photosensitizers (PSs).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202411736 | DOI Listing |
Pestic Biochem Physiol
November 2025
School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add
Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France. Electronic address:
Polysaccharide-based hydrogels often lack mechanical strength and, when used for protein delivery, are generally limited to diffusion-based release. In this work, we developed robust polysaccharide- and polyester-based near-infrared (NIR)-responsive hydrogels. Hydrogels are made from photo-crosslinked methacrylated dextran (DEX-MA), methacrylated polylactide containing oxygen reactive species (ROS) sensitive thioketal groups (PLA-TK-MA), and covalently bound protoporphyrin IX (PPIX) that generates ROS under NIR irradiation.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China.
Current antibiotic-resistant bacteria (ARB) disinfection techniques commonly rely on large dosages of oxidants, resulting in the presence of considerable amounts of residuals and toxic disinfection byproducts (DBPs) in water. Herein, we propose a highly effective ARB disinfection approach via activating an ultralow concentration (10 μM) of chlorite (ClO) by naturally abundant sunlight to generate various reactive species (i.e.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, China.
Plant leaf disease control is crucial given the prevalence of plant leaf diseases around the world. The most crucial aspect of controlling plant leaf diseases is appropriately identifying them. Deep learning-based plant leaf disease recognition is a viable alternative to artificial methods that are useless and inaccurate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243000, China.
The photocatalytic efficiency of two-dimensional covalent organic frameworks (2D COFs) is governed by the spatial arrangement of donor-acceptor (D-A) moieties, which strongly influences exciton transport. However, precise control over D-A alignment, especially across intra- and interlayer dimensions, remains a key challenge for optimizing singlet oxygen (O) generation. Here, we present a linker geometry-directed approach to modulate D-A organization within perylene diimide (PDI)-based COFs.
View Article and Find Full Text PDF