Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We synthesize p-type TiO nanotubes that allow band-gap adjustment by quantum confinement. These tubes therefore enable reductive photocatalytic reactions that are not thermodynamically possible on classic titania photocatalysts. Here, we demonstrate the direct photocatalytic nitrate reduction to ammonia without any need of hole scavengers. The quantum confinement effect (and thus the thermodynamic driving force) can be controlled by the thickness of the nanotube walls. Notably, the use of Pt single atoms as cocatalysts decorated on the TiO nanotubes additionally offers a superior ammonia production and a remarkable enhanced selectivity compared to Pt nanoparticles. Overall, the work not only highlights the potential of size-controlled modifications of electronic properties in extending the utility of a most classical photocatalyst but also exemplifies its use in technologically relevant reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105680PMC
http://dx.doi.org/10.1002/anie.202415865DOI Listing

Publication Analysis

Top Keywords

tio nanotubes
12
quantum confinement
12
p-type tio
8
photocatalytic nitrate
8
nitrate reduction
8
reduction ammonia
8
nanotubes quantum
4
confinement single
4
single atom
4
atom decoration
4

Similar Publications

Design of passive coding RFID sensor tags for smart agriculture based on RGO-TiO-SWCNT electrode.

Mikrochim Acta

September 2025

College of Communications and Electronics Engineering, Qiqihar University, Qiqihar, Heilongjiang, 161006, China.

A passive coding monopod antenna sensor (RFID) tag based on a composite material of titanium dioxide (TiO)/single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (RGO) is studied. This sensor can be used to precisely measure light intensity and carbon dioxide concentration. Under the illumination of light with an intensity ranging from 4 to 18.

View Article and Find Full Text PDF

Titanium (Ti) and Ti alloy are the most widely used implant metals, but the limited bioactivity hinders the further clinical application. Aiming to enhance their osteogenesis, dual biomimetic strategies were utilized to decorate the surface of Ti by topological and biochemical cues. Firstly, a series of concentric circles with TiO nanotubes on Ti were fabricated by photolithography and anodic oxidation.

View Article and Find Full Text PDF

In this work, TiO anatase nanotubes (NTs) were synthesized using a straightforward, two-step anodic oxidation method. To tackle with the optical and electrical properties of the material, a thin layer of tantalum was sputtered onto the nanotube surface. The microstructure of the modified material was analyzed using scanning and transmission electron microscopy (SEM and TEM), while changes in chemical bonding were examined by utilizing X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Due to their outstanding physicochemical properties, carbon nanotubes (CNTs) have been widely studied and applied in the nanoscience and nanotechnology fields. Herein, Fe-based catalysts were prepared by the impregnation method using AlO, SiO, ZrO, TiO and SnO supports and were used for CNT synthesis from -hexane under different reaction times and temperatures. It was found that the metal-support interaction and FeO particle size of Fe-based catalysts regulated CNT growth.

View Article and Find Full Text PDF

In recent years, agriculture has undergone transformative innovations to enhance crop productivity, resilience, and nutritional value. With increasing concerns over food security, environmental degradation, and soil health, there is growing emphasis on sustainable agricultural practices. Among these strategies, the use of plant growth-promoting rhizobacteria (PGPR) have emerged as promising solutions.

View Article and Find Full Text PDF