98%
921
2 minutes
20
Density dependence describes the regulation of population growth rate by population density. This process is widely observed in insect populations, including vectors such as mosquitoes and agricultural pests that are targets of genetic biocontrol using gene drive technologies. While there continues to be rapid advancement in gene drive molecular design, most studies prioritise gene drive efficacy over ecology, and the role of density-dependent feedback on gene drives remains neglected. Furthermore, the details of density dependence experienced in these potential species of interest are usually poorly understood, creating additional constraints and challenges in evaluating the efficacy and efficiency of gene drive systems, especially those that promise local confinement after release. Here, we formulate and analyse a simple, non-species-specific mathematical model which integrates population dynamics by density dependence together with population genetics of a high-threshold two-locus underdominance system. Different models of density dependence and strengths of within-species competition are investigated alongside other genetic and ecological parameters. Our results suggest that for an underdominance gene drive system, density dependence processes, by acting on births or deaths, influence the population dynamics by leading to significantly different population-level suppression in the presence of a fitness cost. However, density dependence does not directly affect the fitness cost threshold for drive establishment. Moreover, we find that the magnitude and range of key ecological parameters (birth and death rates) could result in different outcomes depending on the type of density dependence employed. Our work highlights the importance of considering the ecological contexts in the design, development and deployment of gene drive molecular strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885413 | PMC |
http://dx.doi.org/10.1111/eva.70079 | DOI Listing |
Phytopathology
September 2025
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Institute of Biotechnology and Genetic Engineering, Gazipur, Salna, Bangladesh, 1706;
Wheat blast caused by the fungus (MoT) pathotype is a catastrophic disease that threatens global food security. Lately, was discovered as a blast resistance gene in wheat genotype S615. However, while has recently been cloned, the precise underlying biochemical and molecular mechanism by which this gene confers resistance against MoT, remains to be fully elucidated.
View Article and Find Full Text PDFMol Omics
September 2025
Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri 65211, USA.
Mice lacking caveolin-1 (), a major protein of the lipid raft of plasma membrane, show deregulated cellular proliferation of the mammary gland and an abnormal fetoplacental communication during pregnancy. This study leverages a multi-omics approach to test the hypothesis that the absence of elicits a coordinated crosstalk of genes among the mammary gland, placenta and fetal brain in pregnant mice. Integrative analysis of metabolomics and transcriptomics data of mammary glands showed that the loss of significantly impacted specific metabolites and metabolic pathways in the pregnant mice.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora
Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China. Electronic address:
The PR10 (Pathogenesis-Related Protein 10) family plays a crucial role in plant defense and growth regulation, with unique hydrophobic cavities that bind various ligands, including phytohormones and alkaloids. Among them, Norcoclaurine Synthases (NCS) are key enzymes in benzylisoquinoline alkaloid (BIAs) biosynthesis, catalyzing the Pictet-Spengler reaction to form the precursor (S)-norcoclaurine. However, the evolutionary origins and functions of the PR10 family in BIA biosynthesis remain unclear.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Medical Center of Burn Plastic and Wound Repair, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China. Electronic address:
Skin scar formation is a critical pathological process in wound healing, but its underlying regulatory mechanisms remain incompletely elucidated. By integrating analyses of Bulk-RNA seq and single-cell RNA sequencing (scRNA-seq) data, we identified that ferroptosis-related biological processes potentially play a key role in skin scar formation. Further mechanistic studies demonstrated that in human dermal fibroblast cells, the ferroptosis regulator TIMP metallopeptidase inhibitor 1 (TIMP1) significantly promotes fibroblast differentiation toward a mature phenotype through interactions with cystatin C (CST3), characterized by upregulated expression of myofibroblast differentiation markers such as α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF), along with enhanced cell proliferation and migration abilities.
View Article and Find Full Text PDF