Targeting the CXCR7 pathway with TC14012 to inhibit endothelial necroptosis and lung cancer metastasis.

Biochem Pharmacol

Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endothelial necroptosis plays a crucial role in regulating cancer metastasis. Our previous research demonstrated that TC14012, which is an agonist of CXCR7, exhibits protective effects against endothelial injury. This study was designed to elucidate the effects of TC14012 on endothelial necroptosis and cancer lung metastasis, along with deciphering the underlying molecular mechanisms. The trans-well analysis system was used to evaluate the trans-endothelial migration ability of the tumor cells. Cell death was evaluated with Ethidium Homodimer 3 (EthD-3) staining and flow cytometry analysis. The expression and phosphorylation of MLKL or RIPK3 were evaluated using Western blot. The effects of TC14012 on cancer lung metastasis in vivo were determined using the mouse hematogenous metastasis model. The results showed that TC14012 treatment significantly suppressed trans-endothelial migration of lung cancer cells, through effectively counteracting endothelial cell death induced by the tumor cells in vitro. Upon inhibition of cell necroptosis with necrosulfonamide (NSA), an MLKL inhibitor, the suppressive effects of TC14012 on endothelial cell death were significantly alleviated. Further investigations unveiled that TC14012, via its interaction with CXCR7 receptor rather than CXCR4, impeded the phosphorylation and subsequent activation of the RIPK3/MLKL signaling cascade. Ultimately, in vivo experiments demonstrated that administration of TC14012 mitigated lung infiltration of pre-labeled tumor cells and reduced lung metastasis in mice subsequent to intravenous injection of tumor cells. In summary, TC14012 effectively retards lung cancer metastasis by inhibiting endothelial necroptosis and the consequential trans-endothelial migration of tumor cells, through modulating the CXCR7/RIPK3/MLKL signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2025.116852DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
endothelial necroptosis
16
lung cancer
12
cancer metastasis
12
effects tc14012
12
lung metastasis
12
trans-endothelial migration
12
cell death
12
tc14012
9
tc14012 endothelial
8

Similar Publications

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF

Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.

Cell Physiol Biochem

September 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:

Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.

View Article and Find Full Text PDF

Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

FTOregulated mA modification of primiR139 represses papillary thyroid carcinoma metastasis.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.

View Article and Find Full Text PDF