98%
921
2 minutes
20
This study explores the molecular mechanisms by which trans-zeatin (tZ), a cytokinin, influences shade stress responses in shade-sensitive and shade-tolerant recombinant inbred lines (RILs) 160 and 165 of soybean (Glycine max) under varied light conditions. Using an integrative multi-omics approach combining metabolomics and transcriptomics, we elucidate the regulatory networks underlying soybean adaptation to shade stress. Using an integrative multi-omics approach that combines metabolomics and transcriptomics, we dissect the complex regulatory networks that enable soybean plants to adapt to shade stress. Our results demonstrate that tZ significantly affects growth, biomass accumulation, photosynthetic efficiency, and yield in soybean plants. Metabolomic analysis revealed that shade stress impacts key metabolic pathways, including phenylpropanoids, flavonoids, flavone and flavonol, anthocyanin, and brassinosteroid biosynthesis, with tZ treatment enhances the adaptive responses of soybean plants. Transcriptomic data further identified differential gene expression in these pathways, alongside those related to hormone-mediated signaling pathway, cell wall biogenesis, and defence response pathways underlining the molecular adjustments to tZ and shade stress. Importantly, the integration of metabolomics and transcriptomics data revealed key KEGG pathways and genes regulated by tZ treatment in RIL 160 under shade stress, including significant alterations in phenylpropanoids, flavonoids, hormone-mediated signaling pathway, cell wall biogenesis and defence response, anthocyanin biosynthesis, and fatty acid degradation pathways as well key responsive transcription factors. This study provides insights into the role of tZ in mediating soybean responses to shade stress at the molecular level, offering insights into improving soybean resilience to low light conditions and informing future agricultural practices for optimizing crop yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2025.109686 | DOI Listing |
PLoS One
September 2025
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei
Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States.
The frequency and severity of heat waves are expected to worsen with climate change. Exposure to extreme heat, or prolonged unusually high temperatures, are associated with increased morbidity and mortality. The fetus, infant, and young child are more sensitive to higher temperatures than older children and most adults given that they are rapidly developing.
View Article and Find Full Text PDFJDS Commun
September 2025
Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
Homeostasis and thermoregulation depend on the interplay of the hair and skin. Maternal heat stress in late gestation triggers postnatal hair and skin adaptations in daughters and granddaughters. Herein, we investigated the transgenerational effects of late-gestation heat stress on the hair and skin of the great-granddaughters.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao, 266003 China.
Unlabelled: Microhabitat heterogeneity results in significant variations in the thermal environment on a small spatial scale, leading to different intensities of cold stress during extreme low-temperature events. Investigating variations in body temperature and metabolomic responses of organisms inhabiting different microhabitats emerges as an important task for understanding how organisms respond to more frequent extreme low-temperature events in the face of climate change. In the present study, we measured substrate temperature, air temperature, wind speed, light intensity, and body temperature to evaluate the relative importance of drivers that affect body temperature in different microhabitats, and determined the metabolomic responses of intertidal snails and limpets from different microhabitats (snail: exposed vs.
View Article and Find Full Text PDFPlants (Basel)
August 2025
College of Landscape Architecture and Arts, Northwest A&F University, Xianyang 712100, China.
Mast., a critically endangered spruce species endemic to China, is classified as a national second-level key protected wild plant and listed as critically endangered (CR) on the International Union for Conservation of Nature (IUCN) Red List. Its habitat features complex forest light environments, and global climate change coupled with environmental pollution has increased regional nitrogen deposition, posing significant challenges to its survival.
View Article and Find Full Text PDF