A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Imaging Gas-Involved Structural Dynamics by Environmental Electron Microscopy. | LitMetric

Imaging Gas-Involved Structural Dynamics by Environmental Electron Microscopy.

Small

Center for Electron Microscopy, College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding gas-involved physicochemical reactions is undoubtedly one of the most significant challenges in the modern chemical industry. To clarify how those reactions precede requires deep insights into the real-time visualization of reaction dynamics within a gas environment. The emergence and rapid development of in situ environmental electron microscopy (EEM) including scanning electron microscopy (ESEM) and transmission electron microscopy (ETEM) have enabled multiscale observation of dynamic gas-involved physicochemical reactions. This review examines the state-of-art EEM technologies, categorizing those gas reactions into various physical and chemical processes and detailing the corresponding dynamic behaviors. It begins by reviewing the state-of-the-art EEM techniques and is followed by detailing their application in typical physical processes. It clarifies physical vapor condensation, deposition, and geometric reshaping with gaseous involving. More importantly, all the gas-involved chemical reactions into electrochemical reactions, thermochemical reactions, chemical crystal growth, and catalytic reactions are thoroughly explored and categorized. Finally, the review highlights the technical challenges and valuable perspectives provided by in situ EEM for addressing critical gas-involved issues. Overall, this article offers a multiscale and comprehensive understanding of the physicochemical origins associated with gas-involved reactions, envisioning fundamental strategies for designing high-performance gas-involved functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202411415DOI Listing

Publication Analysis

Top Keywords

electron microscopy
16
reactions
9
environmental electron
8
gas-involved physicochemical
8
physicochemical reactions
8
gas-involved
6
imaging gas-involved
4
gas-involved structural
4
structural dynamics
4
dynamics environmental
4

Similar Publications