98%
921
2 minutes
20
Chronic obstructive pulmonary disease (COPD) is a global health burden, with Moraxella catarrhalis significantly contributing to acute exacerbations and increased healthcare challenges. This study aimed to identify potential drug candidates in Swertia chirayita, a traditional Himalayan medicinal plant, demonstrating efficacy against the ubiquitous surface protein A1 (UspA1) of M. catarrhalis through an in-silico computational approach. The three-dimensional structures of 46 phytocompounds of S. chirayita were retrieved from the IMPPAT 2.0 database. The structures underwent thorough analysis and screening, emphasizing key factors such as binding energy, molecular docking performance, drug-likeness, and toxicity prediction to assess their therapeutic potential. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five phytocompounds such as beta-amyrin, calendol, episwertenol, kairatenol and swertanone were identified as the inhibitors of the UspA1 in M. catarrhalis. UspA1 demonstrated binding affinities of -9.1 kcal/mol for beta-amyrin, -8.9 kcal/mol for calendol, -9.4 kcal/mol for episwertenol, -9.6 kcal/mol for kairatenol, and -9.0 kcal/mol for swertanone. All of these affinities were stronger than that of the control drug ceftobiprole, which had a binding score of -6.6 kcal/mol. The toxicity analysis confirmed that all five compounds are safe potential therapeutic options, showing no toxicity or carcinogenicity. We also performed a 100 ns molecular dynamics simulation of the phytocompounds to analyze their stability and interactions as protein-ligand complexes. Among the five screened phytocompounds, beta-amyrin and episwertenol exhibited favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations, and consistent radius of gyration values. Throughout the simulations, intermolecular interactions such as hydrogen bonds and hydrophobic contacts were maintained. Additionally, the compounds demonstrated strong affinity, as indicated by negative binding free energy values. Taken together, findings of this study strongly suggest that beta-amyrin and episwertenol have the potential to act as inhibitors against the UspA1 protein of M. catarrhalis, offering promising prospects for the treatment and management of COPD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870343 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316275 | PLOS |
Comput Biol Med
September 2025
Institute of Biotechnology, Department of Medical Biotechnology, SIMATS Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India. Electronic address:
Small humanin-like peptide-6 (SHLP6), is derived from the mitochondrial genome. The 3D structure of SHLP6 was evaluated using PEPstr, with homology modeling predicting a Cyt-C structure with a DOPE score of -645.717 and a GA341 score of 0.
View Article and Find Full Text PDFChemistryOpen
September 2025
Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
G protein-coupled receptor family C, group 5, member D (GPRC5D), a member of the G protein-coupled receptor (GPCR) family, has recently emerged as a promising target for immunotherapy in hematologic malignancies, particularly multiple myeloma. However, no systematic virtual screening studies have been conducted to identify small-molecule inhibitors targeting GPRC5D. To address this gap, a multistep computational screening strategy is developed that integrates Protein-Ligand Affinity prediction NETwork (PLANET), a GPU-accelerated version of AutoDock Vina (Vina-GPU), molecular mechanics/generalized born surface area (MM/GBSA), and an online tool for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) property prediction (admetSAR 3.
View Article and Find Full Text PDFMol Divers
September 2025
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Tilorone, a 9-fluorenone scaffold-based molecule, is a known broad-spectrum antiviral with an IC of 180 nM against SARS-CoV-2, but its mechanism is not known. In the present study, we found it to have weak activity against PLpro (IC = 30.7 ± 7.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA.
A detailed understanding of the composition and polymerization mechanism of elemental sulfur remains a decades long unresolved question for modern chemistry. However, the dynamic nature of molten sulfur significantly complicates its accurate characterization. To overcome this challenge, we performed the first comprehensive molecular dynamics (MD) simulations using a ReaxFF reactive force field specifically parameterized to capture the complex ring-opening polymerization dynamics of elemental sulfur.
View Article and Find Full Text PDFBiophys J
September 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
The concept of the circular bioeconomy is a carbon neutral, sustainable system with zero waste. One vision for such an economy is based upon lignocellulosic biomass. This lignocellulosic circular bioeconomy requires CO absorption from biomass growth and the efficient deconstruction of recalcitrant biomass into solubilized and fractionated biopolymers which are then used as precursors for the sustainable production of high-quality liquid fuels, chemical bioproducts and bio-based materials.
View Article and Find Full Text PDF