Discovery of Potential GPRC5D Inhibitors through Virtual Screening and Molecular Dynamics Simulations.

ChemistryOpen

Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G protein-coupled receptor family C, group 5, member D (GPRC5D), a member of the G protein-coupled receptor (GPCR) family, has recently emerged as a promising target for immunotherapy in hematologic malignancies, particularly multiple myeloma. However, no systematic virtual screening studies have been conducted to identify small-molecule inhibitors targeting GPRC5D. To address this gap, a multistep computational screening strategy is developed that integrates Protein-Ligand Affinity prediction NETwork (PLANET), a GPU-accelerated version of AutoDock Vina (Vina-GPU), molecular mechanics/generalized born surface area (MM/GBSA), and an online tool for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) property prediction (admetSAR 3.0), complemented by molecular dynamics (MD) simulations and absolute binding free energy (ABFE). From an initial library of 8,617 compounds, four candidates (compounds 1, 2, 7, and 8) are prioritized. Among them, compound 2 shows relatively strong binding affinity (MM/GBSA ΔG = -79.8 kcal mol, ABFE = -9.0 kcal mol) and high drug-likeness (quantitative estimate of drug-likeness = 0.670). MD simulations confirm its stable salt bridge interactions with key residues ASP238 and ASP239. This study proposes a systematic virtual screening workflow to facilitate the discovery of GPRC5D-targeted therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/open.202500360DOI Listing

Publication Analysis

Top Keywords

virtual screening
12
molecular dynamics
8
dynamics simulations
8
protein-coupled receptor
8
systematic virtual
8
discovery potential
4
potential gprc5d
4
gprc5d inhibitors
4
inhibitors virtual
4
screening
4

Similar Publications

Many animal species live in multi-level societies regulated by complex patterns of dominance. Avoiding competition with dominant group-mates for resources such as food and mates is an important skill for subordinate individuals in these societies, if they wish to evade harassment and aggression. Chimpanzees (Pan troglodytes) are an example of such a species.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine through a Delphi process a list of outcomes measures for clinicians to use when assessing individuals with Lumbar Spinal Stenosis (LSS).

Methods: A three-phase Delphi process was conducted by the International Society for the Study of the Lumbar Spine (ISSLS) Lumbar Spinal Stenosis Taskforce, including two online surveys, two virtual meetings, and three in-person consensus meetings at the ISSLS annual conferences (2023-2025). Participants evaluated and ranked outcome measures for LSS, with final endorsement requiring > 66% agreement.

View Article and Find Full Text PDF

The goal was to develop a pragmatic classification system for conditions associated with chronic pelvic pain (CPP), aiming to enhance diagnosis, management, education, and research of CPP. An international, multidisciplinary panel participated in a modified RAND/UCLA Delphi consensus. This panel included healthcare professionals, medical society representatives, experts, individuals with lived experience of pain, advocacy groups, researchers, educators, and journal editors.

View Article and Find Full Text PDF

Targeting thrombin to screen safe thrombin inhibitors from natural plants and animals is a critical direction in anticoagulant drug development. This study aimed to screen thrombin inhibitors from the nonbloodsucking leech Whitmania pigra (WP) and elucidate the mechanism of anticoagulation through a "computation-guided experimentation" strategy. A peptide library was constructed from WP hydrolysates, and virtual screening was performed using molecular docking and dynamics simulations.

View Article and Find Full Text PDF

Introduction: Colonoscopy is often associated with significant patient pain and anxiety. Virtual reality (VR) technology has been widely used to alleviate pain and anxiety in patients undergoing invasive surgeries. However, there is a lack of reliable evidence supporting its effectiveness in reducing pain and anxiety in patients undergoing colonoscopy.

View Article and Find Full Text PDF