Cobalt-modified crystalline carbon nitride homojunction with enhanced interfacial charge separation for photocatalytic pure water splitting.

J Colloid Interface Sci

School of the Environment and Safety Engineering, School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technolo

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photocatalytic hydrogen production in pure water without oxygen precipitation is highly effective owing to the minimal efficiency of water oxidation for oxygen generation and the complexity of the reaction, yet it presents a significant hurdle. Here, we report the preparation of crystalline carbon nitride (CCN) homojunction-anchored Co atoms using the molten salt and reflux method. Our findings indicate that elevated temperature during ionothermal synthesis promotes the phase transition of poly(heptazine) imides (PHI) to poly(triazine) imides (PTI), and the homogeneous junction formed in this process promotes exciton dissociation as well as carrier migration through the built-in electric field formed by the semi-coherent interface. During water splitting, the Co atom on CCN can modulate the generation of HO and insitu decomposition to produce •OH. Consequently, the refined Co-modified crystalline carbon nitride homojunction exhibited an impressive hydrogen production rate of 425.81 μmol g h under visible light (λ > 400 nm), which provides new ideas for a green and clean process of coupled photocatalytic hydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.02.144DOI Listing

Publication Analysis

Top Keywords

crystalline carbon
12
carbon nitride
12
hydrogen production
12
nitride homojunction
8
pure water
8
water splitting
8
photocatalytic hydrogen
8
cobalt-modified crystalline
4
homojunction enhanced
4
enhanced interfacial
4

Similar Publications

Crystallization and crystal morphology of polymers: A multiphase-field study.

J Thermoplast Compos Mater

August 2025

Institute for Applied Materials - Microstructure Modeling and Simulation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

In this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura's kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials.

View Article and Find Full Text PDF

Polyesters, with their tunable chemical structures and environmental sustainability, have drawn growing attention as solid polymer electrolytes for next-generation solid-state lithium metal batteries (SSLMBs). Through a comprehensive experimental and theoretical study involving the systematic variation of carbon chain lengths in the flexible (diol) and coordinating (diacid) segments, along with selective fluorination at distinct positions along the polymer backbone, 18 types of polyester are fabricated and demonstrate that fluorination at the coordinating segment significantly enhances ionic conductivity by suppressing crystallinity. In contrast, fluorination at the flexible segment reduces ionic migration barriers by providing more homogeneous coordinating sites, thereby improving the lithium-ion transference number, despite increasing chain rigidity and a reduction in overall ionic conductivity.

View Article and Find Full Text PDF

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF

This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.

View Article and Find Full Text PDF

Methylene blue (MB) remains one of the most resilient contaminants in industrial wastewater which presents serious threats to both environmental integrity and human health. Its high chemical stability and resistance to natural degradation render most conventional treatment methods ineffective. As such, this study aimed to develop a multifunctional nanocomposite membrane that mitigates membrane fouling, enhances dye separation, and improves water permeability.

View Article and Find Full Text PDF