Multidimensional Engineering of MG1655 for the Efficient Biosynthesis of Difucosyllactose.

J Agric Food Chem

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Difucosyllactose (DFL), a representative bisfucosylated oligosaccharide found in human milk, has garnered significant attention due to its immense health benefits. To date, several plasmid-based engineered strains have been established for DFL synthesis. However, these strains face challenges such as antibiotic dependence and plasmid instability, which limit their commercial application in the food industry. For this, plasmid-free MG1655 strains were established by integrating multicopy numbers of and into the genome and overexpressing key genes involved in the GDP-l-fucose pathway. To enhance the catalytic efficiency, Fut3Bc was mutated based on AlphaFold 3, obtaining a beneficial mutant Fut3Bc (F24Y). The optimized plasmid-free strain, MGA2S-5, containing 2 copies of and 4 copies of (F24Y) in the genome was obtained. Eventually, strain MGA2S-5 synthesized 35.04 g/L DFL in a 7 L bioreactor by fed-batch cultivation, with no intermediate products remaining in the medium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c12623DOI Listing

Publication Analysis

Top Keywords

strains established
8
strain mga2s-5
8
multidimensional engineering
4
engineering mg1655
4
mg1655 efficient
4
efficient biosynthesis
4
biosynthesis difucosyllactose
4
difucosyllactose difucosyllactose
4
difucosyllactose dfl
4
dfl representative
4

Similar Publications

Animal models of obesity.

Methods Cell Biol

September 2025

Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile. Electronic address:

Obesity is a multifactorial disease characterized by excessive accumulation of adipose tissue, resulting from an imbalance between energy intake and expenditure. Mouse models have emerged as invaluable tools for elucidating the complex genetic, environmental, and physiological mechanisms driving to obesity. This chapter provides an overview of the methodologies employed to establish and study obesity in mice, highlighting their relevance to human disease.

View Article and Find Full Text PDF

Engineering and Functional Expression of the Type III Secretion System in : Enhancing Insecticidal Efficacy and Expanding T3SE Libraries.

J Agric Food Chem

September 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China.

Entomopathogenic nematode symbiotic bacteria (EPNB) enhance nematode insecticidal capacity through symbiosis. This study cloned the complete 32-kb type III secretion system (T3SS) gene cluster from TT01 using Red/ET recombineering and functionally expressed it in T3SS-deficient HN_xs01. Heterologous T3SS expression significantly enhanced HN_xs01 adhesion and invasion capabilities in CF-203 cells.

View Article and Find Full Text PDF

The advancement of bioorthogonal cleavage platforms has emerged as a critical frontier in chemical biology, offering precise molecular liberation through physiologically compatible activation mechanisms. Despite its significant potential, ensuring efficacy typically requires rapid reaction kinetics, high-efficiency payload release, and stable reactants; however, relevant reports remain sparse. Herein, we developed a strain-promoted alkyne-nitrone cycloaddition (SPANC)-based click-release chemistry through installation of a carbamate-linked release moiety at the propargyl position of cyclooctyne, triggering a spontaneous elimination following click cycloaddition to achieve efficient payload liberation.

View Article and Find Full Text PDF

Sepsis remains a leading cause of critical illness and mortality worldwide, driven by a dysregulated host response to infection and often complicated by persistent tachycardia and cardiovascular dysfunction. Increasing evidence implicates excessive sympathetic activation as a contributor to sepsis-related hemodynamic instability and myocardial injury, prompting growing interest in the use of β-adrenergic blockade as a therapeutic adjunct. This review synthesizes current data on the safety and efficacy of short-acting, cardioselective β-blockers (BBs), particularly esmolol and landiolol, in septic shock.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF