USP28-mediated deubiquitination of FOXK1 activates the Hippo signaling pathway to regulate cell proliferation and radiosensitivity in lung cancer.

Life Sci

Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Zhejiang Province Key Disciplines in Traditional Chinese Medicine-Integrated Traditional Chinese and Western Medicine Clin

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Radioresistance remains a significant challenge for lung cancer therapeutics. Forkhead box K1 (FOXK1) plays a role in regulating various biological processes and the progression of multiple cancers. However, the role of FOXK1 in lung cancer progression and radioresistance are not fully understood.

Main Methods: Functional analyses were conducted on lung cancer cells transfected with specified siRNAs or plasmids. The ubiquitination of FOXK1 was evaluated by in vitro ubiquitination assays. RNA sequencing analysis was conducted to identify the downstream signaling pathway regulated by FOXK1. Mouse xenograft models were constructed using lung cancer cells with stable expression of either sh-NC or sh-FOXK1. Immunohistochemistry was used to assess FOXK1 and USP28 expression levels in lung cancer and paired normal lung tissues.

Key Findings: We found that elevated FOXK1 expression markedly enhances radioresistance and tumorigenesis in lung cancer. Furthermore, we demonstrated that ubiquitin specific peptidase 28 (USP28) interacts with and targets FOXK1 for deubiquitination and stabilization. Moreover, we showed that FOXK1 exerts its biological function via activating the Hippo pathway.

Significance: Our research showed that FOXK1 is deubiquitinated by USP28 and facilitates cell proloferation and radioresistance by activating the Hippo pathway, suggesting that FOXK1 may act as a potential radiosensitizing target for lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2025.123483DOI Listing

Publication Analysis

Top Keywords

lung cancer
32
foxk1
11
lung
9
signaling pathway
8
cancer
8
cancer cells
8
activating hippo
8
usp28-mediated deubiquitination
4
deubiquitination foxk1
4
foxk1 activates
4

Similar Publications

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

Expanded senescent CD8 T-cells in IMID patients are associated with distinct inflammatory cytokines.

Clin Exp Immunol

September 2025

Rheumatology Department, Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), CEA , FHU CARE, Le Kremlin Bicêtre, France.

Introduction: Immunosenescence remodels immune functions and was first described with aging. It is present in 25% of cancer patients but has also been described in patients with Immune-mediated inflammatory diseases (IMIDs). This study aims at quantifying cells exhibiting a phenotype of senescence in CD4+ (T4sen) and CD8+ (T8sen) T cells, analyzing its potential drivers and the effect of anti-TNF treatment in a prospective cohort of patients with rheumatoid arthritis (RA), spondyloarthritis (SpA) and Sjögren disease (SjD).

View Article and Find Full Text PDF

Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Aims: We aimed to analyze CD63, a cell surface protein that has been associated with tumor aggressiveness in several cancers, including breast, colorectal, and lung cancer, as well as melanoma, in prostate cancer.

Methods: CD63 expression was analyzed immunohistochemically in a cohort of primary prostate cancers from 281 patients. The results were correlated with clinico-pathologic parameters, including biochemical recurrence.

View Article and Find Full Text PDF