A three-in-one strategy of molecularly imprinted polymers-based electrochemical SERS for sensitive detection of acetamiprid in vegetables.

Food Chem

School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 1

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selectively trapping analytes in complex matrices to hotspots and performing sensitive detection is an extremely important topic in surface-enhanced Raman spectroscopy (SERS) detection. Herein, a molecularly imprinted polymers-based electrochemical SERS (MIP-EC-SERS) sensor was proposed for detecting acetamiprid (AAP) residue. A polydopamine layer rich in imprinted cavities was fabricated on the surface of AuNPs/ITO, using an electropolymerization process, yielding a SERS substrate modified with MIP (MIP/AuNPs/ITO). Selective capture of AAP by imprinted cavities provided the initial signal enhancement. Subsequently, applying a potential of +0.3 V promoted interactions between AAP and SERS interface, further amplifying the SERS signals. The MIP-EC-SERS sensor achieved a limit of detection down to 3.2 nM and exhibited 13.6 times higher sensitivity than that without applied potential (43.5 nM). Importantly, the practical applicability of the sensor was confirmed by accurately testing AAP in vegetable samples, demonstrating promising application potential for food safety monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.143439DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
8
imprinted polymers-based
8
polymers-based electrochemical
8
electrochemical sers
8
sensitive detection
8
mip-ec-sers sensor
8
imprinted cavities
8
sers
6
three-in-one strategy
4
strategy molecularly
4

Similar Publications

Antifouling Molecularly Imprinted Photoelectrochemical Sensors for Ultrasensitive and Selective Detection of the Sulfamethoxazole Antibiotic.

Anal Chem

September 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.

Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.

View Article and Find Full Text PDF

Theoretical simulation-guided design and fabrication of molecularly imprinted hydrogels for selective osteopontin separation.

Food Res Int

November 2025

State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:

Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

Amplified electrochemical detection of sulfadiazine based on Cu-BTC-encapsulated FeNi dual-atom catalysts with improved catalytic efficiency.

Anal Methods

September 2025

College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.

The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.

View Article and Find Full Text PDF

Rutin is a potent antioxidant with therapeutic value in managing vascular and inflammatory conditions. Its accurate quantification is critical for pharmaceutical quality control and food safety. In this study, rutin was employed as a template to construct surface molecularly imprinted magnetic nanozymes (MIPs@FeO-CoNi).

View Article and Find Full Text PDF