Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Autism Spectrum Disorder (ASD) constitutes a group of neurodevelopmental disorders characterized by impairments in verbal and nonverbal communication skills, social interactions, and stereotypes of behavior, with an estimated frequency of 1.2% of children throughout the world. The lack of specific treatments or molecular biomarkers underscores the complexities of ASD as a nonunified clinical entity. Comorbid medical conditions are particularly associated with gastrointestinal issues that may suggest potential interactions between the brain and gut. This review suggests that serotonin plays a significant role in the enteric and central nervous systems in relation to ASD. The modulatory role of serotonin in the enteric nervous system is examined in relation to the pathophysiology of ASD in order to shed light on prospective biomarkers and therapeutic targets that could increase the precision of diagnosis and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715273378214250213114328DOI Listing

Publication Analysis

Top Keywords

autism spectrum
8
spectrum disorder
8
serotonergic dynamics
4
dynamics autism
4
disorder unraveling
4
unraveling intricate
4
intricate connection
4
connection autism
4
asd
4
disorder asd
4

Similar Publications

This meta-analysis examines the effectiveness of pictorial and graphic representations (PGR) in enhancing reading comprehension among K-12 students with autism spectrum disorder (ASD). Through synthesizing findings from five single-case experimental design studies, the analysis explores how different modalities, age groups, instructional contexts, and task types influence comprehension outcomes. Results indicate that interventions utilizing PGR show moderate-to-strong positive effects overall (Tau-U = 0.

View Article and Find Full Text PDF

Nε-lysine acetylation in the lumen of the ER requires two acetyltransferases, ATase1/NAT8B and ATase2/NAT8. They are type II membrane proteins and belong to the larger GNAT superfamily of acetyltransferases. Their enzymatic activity is tightly coupled to the import of acetyl-CoA in the lumen of the ER by AT-1/SLC33A1.

View Article and Find Full Text PDF

Mutation of ube3a causes developmental abnormalities and autism-like molecular and behavioral alterations in zebrafish.

Brain Res Bull

September 2025

Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan. Electronic address:

Mutations in the UBE3A gene are responsible for neurodevelopmental disorders (NDDs), including Angelman syndrome (AS), which is characterized by developmental delays, impaired motor coordination, and cognitive disabilities. In recent years, UBE3A mutations have also been linked to autism spectrum disorders (ASD), due to their significant role in synaptic plasticity and cognitive function. Although substantial research has utilized mammalian models, the zebrafish (Danio rerio) provides unique opportunities to investigate gene functions owing to their transparent embryos, rapid development, and suitability for large-scale genetic and behavioral studies.

View Article and Find Full Text PDF

Neural tracking of social navigation in autism spectrum disorder.

Biol Psychiatry

September 2025

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10027 USA; The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA; Nash Fami

Background: As we navigate changing social landscapes, maintaining maps of interpersonal dynamics can help guide our choices. Autism spectrum disorder (ASD) is associated with social challenges that may affect the accumulation or application of social information. However, little is known about social cognitive mapping in autistic adults.

View Article and Find Full Text PDF

Synapse refinement through the elimination of excess synapses is crucial for proper neuronal circuitry during development and adulthood, and the phagocytic activity of astrocytes plays an important role in this process. Failure to remove excess synapses can lead to neurological and neurodevelopmental disorders like epilepsy and autism spectrum disorder (ASD). The adhesion G protein-coupled receptor BAI1/ADGRB1 contributes to phagocytosis in various tissues, including the clearance of apoptotic myoblasts in skeletal muscle and epithelial cells in the intestine.

View Article and Find Full Text PDF