98%
921
2 minutes
20
Lysosomes actively regulate their lumenal pH, which is necessary for optimal enzymatic activity. Endocytic processes are involved in many diseases, including Alzheimer's disease, in which sub-optimal lysosomal function has been reported. To measure acidification, pH-sensitive probes can be delivered to endosomes and lysosomes using labeled dextran polymers or proteins. However, many commercially available probes have limited sensitivity in the acidic range of lysosomes, and their fluorescence is subject to enzymatic degradation and photobleaching. Herein, we describe the preparation, characterization, and use of a novel pH-sensitive probe, ApHID, a green-emitting fluorescent dye with optimal dynamic range within the acidity of endosomes and lysosomes. ApHID has a pKa near 5, increasing brightness with acidity, and it is robustly resistant to oxidation and photobleaching. We used ApHID ratiometric imaging to measure lysosomal pH in macrophages, yielding virtually identical results when compared with fluorescein and Oregon Green. Overall, ApHID circumvents limitations presented by most commercially available pH-sensitive probes and can be useful in demanding imaging applications such as intravital imaging of tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11838183 | PMC |
http://dx.doi.org/10.1101/2024.01.20.576118 | DOI Listing |
Food Chem
September 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China. Electronic address:
Chem Commun (Camb)
September 2025
Department of Chemistry, College of Pharmacy, North China University of Science and Technology, Tang Shan, P. R. China.
Singlet oxygen (O) plays a crucial role in cancer chemotherapy and ROS biology, driving the need for highly specific probes to monitor its dynamics in real time. Herein, we developed the ratiometric fluorescent probe NAP-t-PY, utilizing a 2-pyridone recognition unit. The probe's 1-methyl-3-benzyl-2-pyridone moiety reacts specifically with O [4 + 2] cycloaddition, forming the endoperoxide NAP-t-PY-EP.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:
Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.
Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.
Anal Chim Acta
November 2025
School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China. Electronic address:
Background: Bisulfite (HSO) plays crucial roles in food safety and physiological health. In the food industry, sulfur dioxide (SO) and its derivative bisulfite (HSO) are extensively employed as preservatives and bleaching agents. Nonetheless, overconsumption of bisulfite can present health hazards like asthma and potentially cancer.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Obstetrics, The Second Hospital of Shandong University, Jinan, 250033, PR China. Electronic address:
Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.
View Article and Find Full Text PDF