Aerobic exercise improves clearance of amyloid-β via the glymphatic system in a mouse model of Alzheimer's Disease.

Brain Res Bull

National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian Key Laboratory of Rehabi

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Aerobic exercise training can promote the recovery of learning and memory ability in Alzheimer's disease (AD), but the specific mechanism is still unclear. Previous studies have suggested that aquaporin-4 (AQP4)-mediated glymphatic system is an important way to clear β-amyloid (Aβ) in the brain, which is closely related to learning and memory impairment in AD. However, it remains unclear whether AQP4 regulates glymphatic clearance of Aβ which contributes to the beneficial effects of aerobic exercise in AD patients. Here, the goal of this study was to investigate the mechanisms about aerobic exercise whether AQP4 could modulate glymphatic system using APP/PS1 mice.

Methods: In this study, APP/PS1 AD model mice were treated with aerobic exercise intervention through swimming exercise training for 4 weeks, and the two groups of mice were injected with AQP4 inhibition virus and empty virus, respectively. Their learning and memory abilities were assessed using behavioral tests, such as the Barnes maze and Morris water maze tests. Hippocampus was obtained from sacrificed mice and used for histological analysis. Tracer imaging of the cerebellar medullary pool was used to observed the CSF-ISF exchange, immunohistochemistry was used to detect the level of Aβ plaques in the hippocampus of mice in each group; immunoblotting was used to detect the expression of AQP4 protein; immunofluorescence co-labeling was used to detect the polarization distribution of AQP4; qRT-PCR was used to detect the transcription levels of AQP4 and its anchoring proteins.

Results: The funding showed that APP/PS1 mice have learning and memory impairment, and the glymphatic system is dysfunction. Swimming training can improve the ability of the glymphatic system to clear Aβ deposition in the hippocampus by up-regulating the transcription levels of Lama1 and Dp71 in the hippocampus, reducing the depolarization distribution of AQP4 in the hippocampus, and enhancing the exchange of CSF-ISF. Thus, improves learning and memory impairment in APP/PS1 mice.

Conclusions: Swimming training can rescue the function of the glymphatic system, increase the CSF-ISF exchange, promote the polarization distribution of AQP4, and reduce the deposition of Aβ in the hippocampus, thereby improving the learning and memory ability of APP/PS1 mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2025.111263DOI Listing

Publication Analysis

Top Keywords

glymphatic system
24
learning memory
24
aerobic exercise
20
memory impairment
12
distribution aqp4
12
alzheimer's disease
8
exercise training
8
memory ability
8
system clear
8
aqp4
8

Similar Publications

Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.

Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.

View Article and Find Full Text PDF

The glymphatic system (GS) is a newly discovered brain anatomy. Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial fluid (ISF) and cerebrospinal fluid (CSF). GS occurs through a normal exchange within perivascular space (PVS), facilitating the elimination of metabolic wastes generated by nerve cells from the brain.

View Article and Find Full Text PDF

The therapeutic effects of vortioxetine on mood and cognition have been documented in major depressive disorder (MDD). This study aims to examine whether vortioxetine can improve brain glymphatic system function and connections among functional brain networks and to explore the underlying relationships among these changes. A total of 34 patients with MDD and 41 healthy controls (HCs) were recruited in the study.

View Article and Find Full Text PDF

Background: Blood pressure (BP) is not steady. It varies over intervals from months to consecutive cardiac cycles and this variation contains meaningful information beyond mean BP. Variability over multiple clinic visits (VVV-BP) and during 24-hour ambulatory monitoring (ABPV) is positively related to risk of stroke and coronary artery disease and negatively associated with cognitive performance.

View Article and Find Full Text PDF

Sleep disorders encompass a range of diseases and symptoms that disrupt individual sleep patterns, degrade sleep quality, and diminish sleep efficiency. Currently, the mechanisms governing sleep regulation and the etiology of sleep disorders remain unclear, leading to clinical treatments that are primarily symptomatic due to the absence of precise intervention methods. Recent studies suggest that glymphatic-meningeal lymphatic route is responsible for the clearance of macromolecular metabolites from the brain, thus playing a pivotal role in maintaining sleep homeostasis and circadian rhythm.

View Article and Find Full Text PDF