Analgesic effect of microneedle with 3-acetylaconitine for neuropathic pain.

Biomed Mater

South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, People's Republic of China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuropathic pain is a worldwide problem that causes physical and psychological pain to many patients. 3-acetylaconitine (AAC) is a kind of non-narcotic analgesic with long-lasting action, non-tolerant and non-addiction. However, it has some cardiac toxicity and can easily cause toxic organ damage. To solve these problems, dissolvable microneedle (MN) patches were prepared and delivered subcutaneously through the skin barrier. The results showed that the solid dispersion made with AAC and polyvinyl pyrrolidone (PVP) effectively changed the solubility of AAC and improved its bioavailability. The MN shape was conical and the bending forces of AAC/PVP-MN were all approximately 1.2 N/needle, which was enough to penetrate the stratum corneum of the skin. Through the use of the neuropathic pain model (spared nerve injury) test, it was found that the soluble MN mediated AAC hypodermic delivery provided effective analgesic activity. Compared with the model group, AAC/PVP-MN could increase mechanical pain threshold and hind legs load-bearing capacity, reduce the inflammation in the body, and have certain protective effect to spinal cord neurons. This study provided an idea for the clinical treatment of neuropathic pain and also a new approach for the safe use of toxic drugs with a narrow range.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/adb671DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
16
pain
6
analgesic microneedle
4
microneedle 3-acetylaconitine
4
neuropathic
4
3-acetylaconitine neuropathic
4
pain neuropathic
4
pain worldwide
4
worldwide problem
4
problem physical
4

Similar Publications

Adhesive materials are widely used in microvascular decompression for treating neurovascular compression syndromes. They play an important role in the critical step of vessel fixation. Recently, completely autologous fibrin glue produced solely from a patient's own plasma was developed.

View Article and Find Full Text PDF

PDGFR mediates lumbar spinal stenosis-induced neuropathic pain by regulating JAK2/STAT3 signaling in activated macrophages.

Prog Neurobiol

September 2025

Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea; Biomedical Science Institute, Kyung Hee University, Seoul, Republi

Lumbar spinal stenosis (LSS) is one of the most common spinal disorders in elderly people and is often accompanied by neuropathic pain. Although our previous studies have demonstrated that infiltrating macrophage contribute to chronic neuropathic pain in LSS rat model, the molecular mechanisms underlying macrophage activation and infiltration have not been fully elucidated. In this study, we examined the critical role of platelet-derived growth factor receptor (PDGFR) signaling pathway in neuropathic pain associated with macrophage infiltration and activation in LSS rats.

View Article and Find Full Text PDF

Selective inhibition of histone deacetylase 3 (HDAC3) prevents vincristine-induced peripheral neuropathy via macrophage polarization.

Neuropharmacology

September 2025

Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India. Electronic address:

Neuroinflammation is vital in vincristine-induced peripheral neuropathy (VIPN). Locally infiltrated macrophages polarize to pro-inflammatory M1-type, release inflammatory cytokines, and contribute to neuropathic pain. Histone deacetylase 3 (HDAC3) regulates macrophage polarization.

View Article and Find Full Text PDF

Central post-stroke pain (CPSP) is an intractable neuropathic pain syndrome. Dual-target deep brain stimulation (DBS), which integrates sensory thalamic modulation and endogenous analgesic pathways, has emerged as a potential intervention; however, clinical evidence remains scarce. We report a 54-year-old woman who developed right-sided limb paresthesia progressing to persistent right hemibody pain following a left thalamic hemorrhage.

View Article and Find Full Text PDF