Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanopores embedded within monolayer hexagonal boron nitride (-BN) offer possibilities of creating atomically thin ceramic membranes with unique combinations of high permeance (atomic thinness), high selectivity (via molecular sieving), increased thermal stability, and superior chemical resistance. However, fabricating size-selective nanopores in monolayer -BN via scalable top-down processes remains nontrivial due to its chemical inertness, and characterizing nanopore size distribution over a large area remains extremely challenging. Here, we demonstrate a facile and scalable approach of exploiting the chemical vapor deposition (CVD) process temperature to enable direct incorporation of subnanometer/nanoscale pores into the monolayer -BN lattice, in combination with manufacturing compatible polymer casting to fabricate centimeter-scale nanoporous atomically thin ceramic membranes. We leverage diffusive transport of analytes including size-selective Ficoll sieving to characterize subnanometer-scale and nanoscale defects that manifest as pores in centimeter-scale -BN membranes, overcoming previous limitations in large-area characterization of nanoscale defects in BN. Our approach opens a new frontier to advance atomically thin membranes to 2D ceramic materials, such as -BN via facile and direct formation of nanopores, for size-selective separations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869279PMC
http://dx.doi.org/10.1021/acs.nanolett.4c05939DOI Listing

Publication Analysis

Top Keywords

atomically thin
16
thin ceramic
12
ceramic membranes
12
hexagonal boron
8
boron nitride
8
nitride -bn
8
monolayer -bn
8
nanoscale defects
8
-bn
6
membranes
5

Similar Publications

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

Hybrid Superconducting-Magnetic Van der Waals Heterostructures: Physics and Application.

Adv Mater

September 2025

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.

Superconductivity and magnetism are two of the most extensively studied ordered systems in condensed matter physics. Recent advancements in the fabrication of van der Waals (vdW) layered materials have significantly advanced the exploration of both fundamental physics and practical applications within their heterostructures. The focus not only lies on the coexisting mechanism between superconductivity and magnetism, but also highlights the potential of these atomically thin layers to serve as crucial components in future superconducting circuits.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization.

View Article and Find Full Text PDF

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF