98%
921
2 minutes
20
Background: Amaranthus retroflexus L. is one of the main broad-leaved weeds in soybean fields in Heilongjiang Province and is an important factor affecting soybean yield. It is becoming increasingly resistant to herbicides. However, studies on the transcriptome level and the molecular mechanism of secondary metabolite accumulation of resistant varieties of Amaranthus retroflexus L. have not been reported. Therefore, comprehensive analysis of transcriptome and metabolome is needed to determine the key metabolic pathways and key genes of Amaranthus retroflexus L.
Results: The biosynthetic pathway of resistance to Amaranthus retroflexus L. was studied by transcriptome and metabolome analysis. Transcriptome analysis showed that in the three comparison groups, compared with untreated (CK) group, there were 979 Differentially expressed genes (DEGs) in resistant (RY) group and 15731 DEGs in sensitive (SY) group; The RY group had 13822 DEGs compared to the SY group. Fluorescent quantitative PCR detection found that two gene tables related to Cytochrome P450 Monooxygenase (P450), Glutathione S-transferase (GST) and other enzyme systems such as peroxidase (POD), polyphenol oxidase (PPO), Catalase (CAT) and Superoxide dismutase (SOD) were significantly reached. Using Venn analysis for metabolomics analysis (VIP>1 and P<0.05), 239 Differentially expressed metabolites (DEMs) were selected. There are 15 common DEMs in the three control groups, and 8 unique DEMs in the RY group. This study detected 76 cases of DEMs and 139 cases of DEMs in the CK, RY, and SY control groups, respectively. More metabolites were detected in the CK and SY control groups. This viewpoint provides evidence for the genetic and metabolic differences between resistance and sensitivity in Amaranthus retroflexus L.. The KEGG in the RY vs SY group is mainly enriched in cysteine and methlonine metabololism, glycine, serine and threonine metabololism, aminoacyl-tRNA biosynthesis, biosynthesis of variant plant secondary metabololites, biosynthesis of amino acids, arginine and proline metabololism, biosynthesis of cofactors. Therefore, the resistance mechanism of Amaranthus retroflexus L. may be mainly generated by the metabolic pathway mechanism of amino acids.
Conclusion: In this study, DEGs and DEMs were identified by de novo Transcriptome assembly and metabonomic analysis, and an important metabolic pathway of resistance was found. It was found that the resistance mechanism of Amaranthus retroflexus L. might be mainly produced by amino acid metabolic pathway. This discovery laid the foundation for further research on the molecular mechanism and functional characteristics of the resistance of Amaranthus retroflexus L..
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825031 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312198 | PLOS |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFAoB Plants
October 2025
Institute of Wetland Ecology and Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation / Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, Taizhou University, Taizhou 318000, Zhejiang, China.
Soil nutrient heterogeneity has generally been shown to benefit alien plants more than native ones. However, whether drought, an important aspect of climate change, alters these effects remains an open question. We used a greenhouse experiment with two alien and two native herbaceous plants.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Freie Universität Berlin, Institute of Biology, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
Microplastics (MPs) are widespread contaminants in agroecosystems, with potential implications for soil microbial communities, plant growth, and crop-weed interactions. This study investigates how MPs of different particle sizes influence crop-weed competition by altering soil microbial communities. Through a controlled greenhouse experiment, we examined the effects of 50 μm and 500 μm polyethylene (PE) MPs on competition between Eruca sativa (crop) and Amaranthus retroflexus (weed).
View Article and Find Full Text PDFJ Food Sci
September 2025
Department of Botany, Shivaji University, Kolhapur, Maharashtra, India.
Amaranthus dubius, commonly known as spleen amaranth, is a valuable nutritional source rich in protein, vitamins, and minerals, especially in regions such as India. This study investigated the protein content of leaves, stems, and seeds, with the seeds showing the highest protein concentration. Protein isolates from seeds were enzymatically hydrolyzed using proteolytic enzymes.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Singapore, Singapore.
Accurate estimation of leaf nitrogen concentration and shoot dry-weight biomass in leafy vegetables is crucial for crop yield management, stress assessment, and nutrient optimization in precision agriculture. However, obtaining this information often requires access to reliable plant physiological and biophysical data, which typically involves sophisticated equipment, such as high-resolution sensors and cameras. In contrast, smartphone-based sensing provides a cost-effective, manual alternative for gathering accurate plant data.
View Article and Find Full Text PDF