Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by .

Appl Environ Microbiol

College of Urban and Environmental Science, Peking University, Beijing, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent discoveries have shown that some species can reduce Fe(III), reshaping our understanding of ecophysiology. However, the specific minerals reduced, the products formed, and the underlying metabolic mechanisms remain elusive. Here, we report on the cometabolic process of Fe(III) reduction and methylotrophic methanogenesis in zm-15. Biogeochemical and mineralogical analyses were conducted to investigate Fe(III) reduction from three mineral preparations-ferrihydrite, goethite, and hematite. The results revealed that 38% of the 6 mM Fe(III) in ferrihydrite was reduced within 4 days, and this percentage increased to 75% with the addition of 100 µM anthraquinone-2,6-disulfonate (AQDS). Active Fe(III) reduction occurred immediately and preceded rapid methanogenesis. The addition of ferrihydrite and AQDS together significantly enhanced the maximal CH₄ production rate. However, Fe(III) reduction did not occur in goethite or hematite, even with the addition of 100 µM AQDS. Vivianite was identified as the major product from ferrihydrite reduction. Transcriptomic analysis revealed that gene expression related to the oxidation branch of the methyl-dismutating pathway and the membrane-associated electron transport chain (ETC) was significantly upregulated, whereas the expressions of genes associated with the reduction branch of the methyl-dismutating pathway were downregulated. In conclusion, zm-15 demonstrates a strong ability to reduce poorly crystalline ferrihydrite, but not highly crystalline goethite and hematite. During the cometabolism of Fe(III) reduction and CH₄ production from methanol, the methyl-oxidation and membrane ETC pathways are enhanced, while the methyl-reduction pathway is downregulated. The mechanism of electron relay from cells to ferrihydrite, however, remains unclear and warrants further investigation.IMPORTANCEThe recent discovery that certain species can grow by reducing Fe(III) challenges the traditional understanding of methanogens. However, the underlying metabolic mechanisms remain largely unexplored. Using a combination of biogeochemical, mineralogical, and microbiological approaches, we investigated the ability of zm-15. It exhibited a strong capacity to reduce poorly crystalline ferrihydrite but not highly crystalline goethite and hematite. The formation of vivianite from ferrihydrite reduction is likely due to the high rate of Fe(III) reduction and the presence of excess phosphorus in incubations. During the cometabolism of Fe(III) reduction and CH production from methanol, the methyl-oxidation and membrane electron transport pathways are upregulated, while the methyl-reduction pathway is downregulated. Our research uncovers a differential regulation of metabolic pathways during the cometabolism of Fe(III) reduction and CH production from methanol. The findings shed new light on the adaptive strategies employed by in environments with the presence of Fe(III) and suggestthat can play a significant role in methane production and iron cycling in natural environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921357PMC
http://dx.doi.org/10.1128/aem.02238-24DOI Listing

Publication Analysis

Top Keywords

feiii reduction
32
goethite hematite
16
reduction
12
ferrihydrite reduction
12
feiii
12
pathway downregulated
12
cometabolism feiii
12
production methanol
12
underlying metabolic
8
metabolic mechanisms
8

Similar Publications

Ni-Mediated High-Spin Iron(III) for Boosting Electrocatalytic NO to Oxime Conversion.

Angew Chem Int Ed Engl

September 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, LIFM, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.

Oximes serve as indispensable intermediates in synthetic chemistry, owing to their distinctive C═N─OH structure, conferring highly versatile reactivity. Synthesis of oxime via the electrochemical method has potential advantages, accompanied by the upgrading of industrialization. Herein, we propose a novel strategy by introducing nickel (Ni) mediation to obtain high-spin iron (Fe)(III) in phthalocyanine structure for synthesizing glyoxylate oxime via electrocatalytic nitric oxide (NO) coupling with keto acid.

View Article and Find Full Text PDF

Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic state that standard DFT fails to capture.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

Accelerating iron redox cycling via acetate modification: a ligand engineering for sustainable fenton-like oxidation.

Water Res

September 2025

State Key Laboratory of Soil Pollution Control and Safety, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China. Electronic address:

Accelerating the rate-limiting surface Fe(III)/Fe(II) redox cycling is pivotal for efficient iron-mediated Fenton-like decontamination, yet conventional reductants (e.g., toxic hydroxylamine, thiosulfate) suffer from secondary toxicity, self-quenching, and heavy metal leaching.

View Article and Find Full Text PDF